【題目】設x、y是任意兩個有理數,規定x與y之間的一種運算“⊕”為:
x⊕y=
(1)試求1⊕(-1)的值;
(2)試判斷該運算“⊕”是否具有交換律,說明你的理由;
(3)若2⊕x=0,求x的值.
【答案】(1)-8;(2)該運算具有交換律;(3) x=1.
【解析】
(1)根據運算規則,因為1>-1,所以用第一個代數式進行計算;
(2)分三種情況討論:當x>y時,當x=y時,當x<y時,按照運算規則,分別計算xy與y
x,看結果是否相等,若相等則具有交換律,反之則不具有;
(3)分兩種情況討論:當2≥x時,當2<x時,然后分別按照運算規則列出方程求解即可.
解:(1) ∵ 1>-1,∴1⊕(-1)=2×1+3×(-1)-7=-8;
(2) 該運算具有交換律
理由:分三種情況
當x>y時,xy=2x+3y-7, y
x=3y+2x-7,此時x
y= y
x
當x=y時, xy=2x+3y-7, y
x=2y+3x-7,此時x
y=y
x
當x<y時,xy=3x+2y-7, y
x=2y+3x-7,此時x
y= y
x
所以該運算“”具有交換律.
(3) 當2≥x時,2⊕x=2×2+3x-7=0 解得 x=1
當2<x時,2⊕x =3×2+2x-7=0 解得x=(舍去)
故x的值為1.
科目:初中數學 來源: 題型:
【題目】如圖,小明想利用太陽光測量樓高,發現對面墻上有這棟樓的影子,小明邊移動邊觀察,發現站到點E處時,可以使自己落在墻上的影子與這棟樓落在墻上的影子重疊且高度恰好相同.此時測得墻上影子高,
,
(點A、E、C在同一直線上).已知小明身高EF是1.6m,則樓高AB為______m.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在二次函數y=ax2+bx+c的圖象中,你認為其中正確的是( )
A. a>0 B. c>0
C. b2﹣4ac<0 D. 一元二次方程ax2+bx+c=0有兩個相等實根
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】二次函數y=ax2+bx+c (a、b、c為常數且a≠0)中的x與y的部分對應值如下表,
x | … | -3 | -2 | -1 | 0 | 1 | 2 | 3 | 4 | 5 | … |
y | … | 12 | 5 | 0 | -3 | -4 | -3 | 0 | 5 | 12 | … |
下列四個結論:
(1)二次函數y=ax2+bx+c 有最小值,最小值為-3;
(2)拋物線與y軸交點為(0,-3);
(3)二次函數y=ax2+bx+c 的圖像對稱軸是x=1;
(4)本題條件下,一元二次方程ax2+bx+c的解是x1=-1,x2=3.
其中正確結論的個數是( )
A. 4 B. 3 C. 2 D. 1
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖所示,在圓⊙O內有折線OABC,其中OA=8,AB=12,∠A=∠B=60°,則BC的長為( 。
A. 19 B. 16 C. 18 D. 20
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】有甲、乙兩名采購員去同一家公司分別購買兩次飼料,兩次購買的飼料價格分別為m元/千克和n元/千克,且m≠n,兩名采購員的采購方式也不同,其中甲每次購買800千克,乙每次用去800元,而不管購買多少千克的飼料。
(1)甲、乙兩次購買飼料的平均單價各是多少?(用字母m、n表示)
(2)誰的購買方式比較合算?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知拋物線.
(1)當頂點坐標為時,求拋物線的解析式;
(2)當時,
,
是拋物線圖象上的兩點,且
,求實數
的取值范圍;
(3)若拋物線上的點,滿足
時,
,求
的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知,如圖,A、B分別為數軸上的兩點,A點對應的數為-20,B點對應的數為100.
請寫出AB中點M對應的數。
(2)現有一只電子螞蟻P從B點出發,以6單位/秒的速度向左運動,同時另一只電子螞蟻Q恰好從A點出發,以4單位/秒的速度向右運動。設兩只電子螞蟻在數軸上的C點相遇,你知道C點對應的數是多少嗎?
(3)若當電子螞蟻P從B點出發時,以6單位/秒的速度向左運動,同時另一只電子螞蟻Q恰好從A點出發,以4單位/秒的速度也向左運動。設兩只電子螞蟻在數軸上的D點相遇,你知道D點對應的數是多少嗎?
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com