精英家教網 > 初中數學 > 題目詳情

【題目】把一張長方形紙片ABCD沿EF折疊后EDBC的交點為G,D、C分別在M、N的位置上,若∠EFG=55°,求:

(1)∠FED的度數;

(2)∠FEG的度數;

(3)∠1∠2的度數.

【答案】(1)55°(2)55°(3)70°,110°

【解析】

(1)直接根據平行線的性質可得出結論;
(2)根據圖形翻折不變換的性質得出結論;
(3)先根據補角的定義求出∠1的度數,再由平行線的性質即可得出結論.

(1)ADBC,EFG=55°,∴∠FED=EFG=55°;

(2)∵四邊形EFNM由四邊形EFCD翻折而成,

∴∠FEG=FED=55°;

(3)∵∠FEG=FED=55°,

∴∠1=180°﹣55°﹣55°=70°.

ADBC,

∴∠2=180°﹣1=180°﹣70°=110°.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】由于只有1張市運動會開幕式的門票,小王和小張都想去,兩人商量采取轉轉盤(如圖,轉盤盤面被分為面積相等,且標有數字1,2,3,4的4個扇形區域)的游戲方式決定誰勝誰去觀看.規則如下:兩人各轉動轉盤一次,當轉盤指針停止,如兩次指針對應盤面數字都是奇數,則小王勝;如兩次指針對應盤面數字都是偶數,則小張勝;如兩次指針對應盤面數字是一奇一偶,視為平局.若為平局,繼續上述游戲,直至分出勝負. 如果小王和小張按上述規則各轉動轉盤一次,則

(1)小王轉動轉盤,當轉盤指針停止,對應盤面數字為奇數的概率是多少?
(2)該游戲是否公平?請用列表或畫樹狀圖的方法說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在△ABC中,∠C=90°,∠BAC的平分線交BC于點D,點O在AB上,以點O為圓心,OA為半徑的圓恰好經過點D,分別交AC,AB于點E,F. (Ⅰ)試判斷直線BC與⊙O的位置關系,并說明理由;
(Ⅱ)若BD=2 ,BF=2,求陰影部分的面積(結果保留π).

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,下列能判定AB∥CD的條件有( )個.

1∠B+∠BCD=180°;(2∠1=∠2;(3∠3=∠4;(4∠B=∠5

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖所示已知,,OM平分,ON平分;

(1);

(2)如圖∠AOB900,將OCO點向下旋轉,使∠BOC,仍然分別作∠AOC,∠BOC的平分線OM,ON,能否求出∠MON的度數,若能,求出其值,若不能,試說明理由.

(3),,仍然分別作∠AOC,∠BOC的平分線OMON,能否求出∠MON的度數,若能,求的度數;并從你的求解中看出什么什么規律嗎?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在Rt△ABC中,∠C=90°,AC=BC,點O在AB上,經過點A的⊙O與BC相切于點D,交AB于點E.
(1)求證:AD平分∠BAC;
(2)若CD=1,求圖中陰影部分的面積(結果保留π).

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,有以下3句話:①AB∥CD,②∠B=∠C、③∠E=∠F、請以其中2句話為條件,第三句話為結論構造命題.

(1)你構造的是哪幾個命題?

(2)你構造的命題是真命題還是假命題?請加以證明.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,點D,E在△ABC的邊BC上,連接AD,AE.有下面三個等式:ABAC;ADAE;BDCE.以此三個等式中的兩個作為命題的題設,另一個作為命題的結論,相構成三個命題.解答下列問題

1)寫出這三個命題,并直接判斷其是否是真命題;

2)請選擇一個真命題進行證明(先寫出所選命題,然后證明).

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,直線AB,CD相交于點O,OD平分∠BOE,OF平分∠AOE

1)判斷OFOD的位置關系,并進行證明.

2)若∠AOC:∠AOD15,求∠EOF的度數.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视