【題目】準備一張矩形紙片,按如圖操作: 將△ABE沿BE翻折,使點A落在對角線BD上的M點,將△CDF沿DF翻折,使點C落在對角線BD上的N點.
(1)求證:四邊形BFDE是平行四邊形;
(2)若四邊形BFDE是菱形,AB=2,求菱形BFDE的面積.
【答案】
(1)證明:∵四邊形ABCD是矩形,
∴∠A=∠C=90°,AB=CD,AB∥CD,
∴∠ABD=∠CDB,
∴∠EBD= ∠ABD=∠FDB,
∴EB∥DF,
∵ED∥BF,
∴四邊形BFDE為平行四邊形
(2)解:∵四邊形BFDE為菱形,
∴BE=ED,∠EBD=∠FBD=∠ABE,
∵四邊形ABCD是矩形,
∴AD=BC,∠ABC=90°,
∴∠ABE=30°,
∵∠A=90°,AB=2,
∴AE= =
,BF=BE=2AE=
,
故菱形BFDE的面積為: ×2=
【解析】(1)根據四邊形ABCD是矩形和折疊的性質可得EB∥DF,DE∥BF,根據平行四邊形判定推出即可.(2)求出∠ABE=30°,根據直角三角形性質求出AE、BE,再根據菱形的面積計算即可求出答案.
【考點精析】解答此題的關鍵在于理解平行四邊形的判定的相關知識,掌握兩組對邊分別平行的四邊形是平行四邊形:兩組對邊分別相等的四邊形是平行四邊形;一組對邊平行且相等的四邊形是平行四邊形;兩組對角分別相等的四邊形是平行四邊形;對角線互相平分的四邊形是平行四邊形,以及對菱形的性質的理解,了解菱形的四條邊都相等;菱形的對角線互相垂直,并且每一條對角線平分一組對角;菱形被兩條對角線分成四個全等的直角三角形;菱形的面積等于兩條對角線長的積的一半.
科目:初中數學 來源: 題型:
【題目】如圖,已知直角梯形OABC的邊OA在y軸的正半軸上,OC在x軸的正半軸上,OA=AB=2,OC=3,過點B作BD⊥BC,交OA于點D.將∠DBC繞點B按順時針方向旋轉,角的兩邊分別交y軸的正半軸、x軸的正半軸于E和F.
(1)求經過A、B、C三點的拋物線的解析式;
(2)當BE經過(1)中拋物線的頂點時,求CF的長;
(3)連接EF,設△BEF與△BFC的面積之差為S,問:當CF為何值時S最小,并求出這個最小值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在8×8的正方形網格中,有一個Rt△AOB,點O是直角頂點,點O、A、B分別在網格中小正方形的頂點上,請按照下面要求在所給的網格中畫圖.
(1)在圖1中,將△AOB先向右平移3個單位,再向上平移2個單位,得到△A1O1B1 , 畫出平移后的△A1O1B1;(其中點A、O、B的對應點分別為點A1 , O1 , B1)
(2)在圖2中,△AOB與△A2O2B2是關于點P對稱的圖形,畫出△A2O2B2 , 連接BA2 , 并直接寫出tan∠A2BO的值.(其中A,O,B的對應點分別為點A2 , O2 , B2)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】小明早晨跑步,他從自己家出發,向東跑了2km到達小彬家,繼續向東跑了1.5km到達小紅家,然后又向西跑了4.5km到達學校,最后又向東,跑回到自己家.
(1)以小明家為原點,以向東為正方向,用1個單位長度表示1km,在圖中的數軸上,分別用點A表示出小彬家,用點B表示出小紅家,用點C表示出學校的位置;
(2)求小彬家與學校之間的距離;
(3)如果小明跑步的速度是250m/min,那么小明跑步一共用了多長時間?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】設邊長為3的正方形的對角線長為a.下列關于a的四種說法:
①a是無理數;
②a可以用數軸上的一個點來表示;
③3<a<4;
④a是18的算術平方根.
其中,所有正確說法的序號是( )
A.①④
B.②③
C.①②④
D.①③④
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖①,在平面直角坐標中,點A的坐標為(1,﹣2),點B的坐標為(3,﹣1),二次函數y=﹣x2的圖象為l1 .
(1)平移拋物線l1 , 使平移后的拋物線經過點A,但不過點B.
①滿足此條件的函數解析式有個.
②寫出向下平移且經點A的解析式 .
(2)平移拋物線l1 , 使平移后的拋物線經過A,B兩點,所得的拋物線l2 , 如圖②,求拋物線l2的函數解析式及頂點C的坐標,并求△ABC的面積.
(3)在y軸上是否存在點P,使S△ABC=S△ABP?若存在,求出點P的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知二次函數y1=x2+mx+n的圖象經過點P(﹣3,1),對稱軸是經過(﹣1,0)且平行于y軸的直線.
(1)求m,n的值.
(2)如圖,一次函數y2=kx+b的圖象經過點P,與x軸相交于點A,與二次函數的圖象相交于另一點B,點B在點P的右側,PA:PB=1:5,求一次函數的表達式.
(3)直接寫出y1>y2時x的取值范圍.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC中,D是BC邊上的一點,E是AD的中點,過A點作BC的平行線交CE的延長線于F,且AF=BD,連接BF.
(1)求證:D是BC的中點.
(2)如果AB=AC,試判斷四邊形AFBD的形狀,并證明你的結論.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某企業生產并銷售某種產品,假設銷售量與產量相等,如圖中的折線ABD、線段CD分別表示該產品每千克生產成本y1(單位:元)、銷售價y2(單位:元)與產量x(單位:kg)之間的函數關系.
(1)請解釋圖中點D的橫坐標、縱坐標的實際意義
(2)求線段AB所表示的y1與x之間的函數表達式
(3)當該產品產量為多少時,獲得的利潤最大?最大利潤是多少?
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com