【題目】某教研機構為了解在校初中生閱讀數學教科書的現狀,隨機抽取某校部分初中學生進行了調查.依據相關數據繪制成如圖所示的不完整的統計圖表,請根據圖表中的信息解答下列問題:
某校初中生閱讀數學教科書情況統計圖表
類別 | 人數 | 占總人數比例 |
重視 | a | 0.3 |
一般 | 57 | 0.38 |
不重視 | b | c |
說不清楚 | 9 | 0.06 |
(1)求樣本容量及表格中a,b,c的值,并補全統計圖.
(2)若該校共有初中生2 300名,請估計該校“不重視閱讀數學教科書”的初中生人數.
(3)①根據上面的統計結果,談談你對該校初中生閱讀數學教科書的現狀的看法及建議;
②如果要了解全省初中生閱讀數學教科書的情況,你認為應該如何進行抽樣?
【答案】(1)150人, 如圖所示見解析;(2)598人;(3)①同學們應重視閱讀數學教科書,從而獲取更多的數學課外知識和對相關習題、定理的深層次理解與認識,②應隨機抽取不同的學校以及不同的年級進行抽樣,進而分析.
【解析】
(1)利用類別為“一般”人數與所占百分比,進而得出樣本容量,進而得出a,b,c的值;
(2)利用“不重視閱讀數學教科書”在樣本中所占比例,進而估計全校在這一類別的人數;
(3)根據(1)中所求數據進而分析得出答案,再從樣本抽出的隨機性進而得出答案.
(1)由題意可得出:樣本容量為:57÷0.38=150(人),
∴a=150×0.3=45,
b=150-57-45-9=39,
c=39÷150=0.26,
如圖所示:
(2)若該校共有初中生2300名,
該校“不重視閱讀數學教科書”的初中人數約為:2300×0.26=598(人);
(3)①根據以上所求可得出:只有30%的學生重視閱讀數學教科書,有32%的學生不重視閱讀數學教科書或說不清楚,可以看出大部分學生忽略了閱讀數學教科書,同學們應重視閱讀數學教科書,從而獲取更多的數學課外知識和對相關習題、定理的深層次理解與認識.
②如果要了解全省初中生閱讀數學教科書的情況,應隨機抽取不同的學校以及不同的年級進行抽樣,進而分析.
科目:初中數學 來源: 題型:
【題目】如圖,點是等邊
內一點,
.將
繞點
按順時針方向旋轉
得
,連接
.
(1)求證: 是等邊三角形;
(2)當時,試判斷
的形狀,并說明理由;
(3)探究:當為多少度時,
是等腰三角形?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如果對于某一特定范圍內的x的任意允許值,P=|10﹣2x|+|10﹣3x|+|10﹣4x|+|10﹣5x|+…+|10﹣10x|為定值,則此定值是( 。
A. 20 B. 30 C. 40 D. 50
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】小軍同學在學校組織的社會調查活動中負責了解他所居住的小區450戶居民的生活用水情況,他從中隨機調查了50戶居民的月均用水量(單位:t),并繪制了樣本的頻數分布表和頻數分布直方圖(如圖).
(1)請根據題中已有的信息補全頻數分布表和頻數分布直方圖;
月均用水量/t | 頻數 | 百分比 |
2≤x<3 | 2 | 4% |
3≤x<4 | 12 | 24% |
4≤x<5 | ||
5≤x<6 | 10 | 20% |
6≤x<7 | 12% | |
7≤x<8 | 3 | 6% |
8≤x<9 | 2 | 4% |
(2)如果家庭月均用水量“大于或等于4 t且小于7 t”為中等用水量家庭,請你通過樣本估計總體中的中等用水量家庭大約有多少戶.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】初一(1)班針對“你最喜愛的課外活動項目”對全班學生進行調查(每名學生分別選一個活動項目),并根據調查結果列出統計表,繪制成扇形統計圖.
根據以上信息解決下列問題:
(1) ,
;
(2)扇形統計圖中機器人項目所對應扇形的圓心角度數為 ;
(3)從選航模項目的 名學生中隨機選取
名學生參加學校航模興趣小組訓練,請用列舉法(畫樹狀圖或列表)求所選取的
名學生中恰好有
名男生、
名女生的概率.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】今年某區為綠化行車道,計劃購買甲、乙兩種樹苗共計n棵.設購買甲種樹苗x棵,有關甲、乙兩種樹苗的信息如圖所示.
(1)當n=500時,
①根據信息填表(用含x的式子表示);
樹苗類型 | 甲種樹苗 | 乙種樹苗 |
購買樹苗數量(單位:棵) | x | |
購買樹苗的總費用(單位:元) |
②如果購買甲、乙兩種樹苗共用去25 600元,那么甲、乙兩種樹苗各購買了多少棵?
(2)要使這批樹苗的成活率不低于92%,且使購買這兩種樹苗的總費用為26 000元,求n的最大值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖1,已知是等腰直角三角形,
,點D是BC的中點
作正方形DEFG,使點A、C分別在DG和DE上,連接AE,BG.
試猜想線段BG和AE的數量關系是______;
將正方形DEFG繞點D逆時針方向旋轉
,
判斷
中的結論是否仍然成立?請利用圖2證明你的結論;
若
,當AE取最大值時,求AF的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】(13分)(1)如圖1,在四邊形ABCD中,AB=AD,∠BAD=120°,∠B=∠ADC=90°,E、F分別是BC、CD上的點,且∠EAF=60°,延長FD到點G,使DG=BE,連接AG,先證明△ABE≌△ADG,再證明△AEF≌△AGF,可得線段BE、EF、FD之間的數量關系為 .
(2)如圖2,在四邊形ABCD中,AB=AD,∠B+∠D=180°,E、F分別是BC、CD上的點,且∠EAF=∠BAD,線段BE、EF、FD之間存在什么數量關系,為什么?
(3)如圖3,點A在點O的北偏西30°處,點B在點O的南偏東70°處,且AO=BO,點A沿正東方向移動249米到達E處,點B沿北偏東50°方向移動334米到達點F處,從點O觀測到E、F之間的夾角為70°,根據(2)的結論求E、F之間的距離.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知,△ABC 是等腰直角三角形,BC=AB,A 點在 x 負半軸上,直角頂點 B 在 y 軸上,點 C 在 x 軸上方.
(1)如圖1所示,若A的坐標是(﹣3,0),點 B的坐標是(0,1),求點 C 的坐標;
(2)如圖2,過點 C 作 CD⊥y 軸于 D,請直接寫出線段OA,OD,CD之間等量關系;
(3)如圖3,若 x 軸恰好平分∠BAC,BC與 x 軸交于點 E,過點 C作 CF⊥x 軸于 F,問 CF 與 AE 有怎樣的數量關系?并說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com