【題目】如圖,AB為⊙O的直徑,C為⊙O上一點,過點C作⊙O的切線,交BA的延長線交于點D,過點B作BE⊥BA,交DC延長線于點E,連接OE,交⊙O于點F,交BC于點H,連接AC.
(1)求證:∠ECB=∠EBC;
(2)連接BF,CF,若CF=6,sin∠FCB= ,求AC的長.
【答案】
(1)證明:∵BE⊥OB,
∴BE是⊙O的切線,∵EC是⊙O的切線,
∴EC=EB,
∴∠ECB=∠EBC
(2)解:連接CF、CO、AC.
∵EB=EC,OC=OB,
∴EO⊥BC,
∴∠CHF=∠CHO=90°,
在Rt△CFH中,∵CF=6,sin∠FCH= ,
∴FH=CFsin∠FCH= ,CH=
=
,
設OC=OF=x,
在Rt△COH中,∵OC2=CH2+OH2,
∴x2=( )2+(x﹣
)2,
∴x=5,
∴OH= ,
∵OH⊥BC,
∴CH=HB,∵OA=OB,
∴AC=2OH= .
【解析】(1)只要證明EB是⊙O的切線,利用切線長定理可知EC=EB,即可解決問題.(2)連接CF、CO、AC.在Rt△CFH中,由CF=6,sin∠FCH= ,推出FH=CFsin∠FCH=
,CH=
=
,設OC=OF=x,在Rt△COH中,由OC2=CH2+OH2 , 可得x2=(
)2+(x﹣
)2 , 解得x=5,推出OH=
,再利用三角形中位線定理證明AC=2OH即可解決問題.
科目:初中數學 來源: 題型:
【題目】網癮低齡化問題已經引起社會各界的高度關注,有關部門在全國范圍內對12﹣35歲的網癮人群進行了簡單的隨機抽樣調查,繪制出以下兩幅統計圖.
請根據圖中的信息,回答下列問題:
(1)這次抽樣調查中共調查了人;
(2)請補全條形統計圖;
(3)扇形統計圖中18﹣23歲部分的圓心角的度數是;
(4)據報道,目前我國12﹣35歲網癮人數約為2000萬,請估計其中12﹣23歲的人數.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】一個零件的形狀如圖所示,按規定這個零件中∠A和∠DBC都應為直角,工人師傅量出了這個零件各邊尺寸,那么這個零件符合要求嗎?求出四邊形ABCD的面積.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在平面直角坐標系中,點A、B在坐標軸上,其中A(0,a)、B(b,0)滿足:|2a﹣b﹣1|+=0.
(1)求A、B兩點的坐標;
(2)將線段AB平移到CD,點A的對應點為C(﹣2,t),如圖1所示.若三角形ABC的面積為9,求點D的坐標;
(3)平移線段AB到CD,若點C、D也在坐標軸上,如圖2所示,P為線段AB上的一動點(不與A、B重合),連接OP,PE平分∠OPB,∠BCE=2∠ECD.求證:∠BCD=3(∠CEP﹣∠OPE).
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,動點P在平面直角坐標系中按圖中箭頭所示方向運動,第1次從原點運動到點(1,1),第2次接著運動到點(2,0),第3次接著運動到點(3,2),…,按這樣的運動規律,經過第2017次運動后,動點P的坐標是______.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某航空公司經營中有A、B、C、D這四個城市之間的客運業務.它的部分機票價格如下:A﹣B為2000元;A﹣C為1600元;A﹣D為2500元;B﹣C為1200元;C﹣D為900元.現在已知這家公司所規定的機票價格與往返城市間的直線距離成正比,則B﹣D的機票價格( 。
A. 1400元 B. 1500元 C. 1600元 D. 1700元
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com