【題目】如圖,在平行四邊形ABCD中,對角線AC、BD相交于點O,AB=OB,點E、點F分別是OA、OD的中點,連接EF,∠CEF=45°,EM⊥BC于點M,EM交BD于點N,FN=,則線段BC的長為_____.
【答案】
【解析】設EF=x,根據三角形的中位線定理表示AD=2x,AD∥EF,可得∠CAD=∠CEF=45°,證明△EMC是等腰直角三角形,則∠CEM=45°,證明△ENF≌△MNB,則EN=MN=x,BN=FN=
,最后利用勾股定理計算x的值,可得BC的長.
設EF=x,
∵點E、點F分別是OA、OD的中點,
∴EF是△OAD的中位線,
∴AD=2x,AD∥EF,
∴∠CAD=∠CEF=45°,
∵四邊形ABCD是平行四邊形,
∴AD∥BC,AD=BC=2x,
∴∠ACB=∠CAD=45°,
∵EM⊥BC,
∴∠EMC=90°,
∴△EMC是等腰直角三角形,
∴∠CEM=45°,
連接BE,
∵AB=OB,AE=OE
∴BE⊥AO
∴∠BEM=45°,
∴BM=EM=MC=x,
∴BM=FE,
易得△ENF≌△MNB,
∴EN=MN=x,BN=FN=
,
Rt△BNM中,由勾股定理得:BN2=BM2+MN2,
∴()2=x2+(
x)2,
x=2或-2
(舍),
∴BC=2x=4.
故答案為:4.
科目:初中數學 來源: 題型:
【題目】從、
、
、
、
這五個數中,任取一個數作為
的值,恰好使得關于
的一元二次方程
有兩個不相等的實數根,且使兩個根都在
和
之間(包括
和
),則取到滿足條件的
值的概率為________.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知拋物線經過點A(-1,0),B(4,0)C(0,2)三點,點D與點C關于x軸對稱,點P是x軸上的一個動點,設點P的坐標為(m,0),過點P做x軸的垂線交拋物線于點Q,交直線BD于點M.
(1)求該拋物線所表示的二次函數的表達式;
(2)已知點F(0,),當點P在x軸上運動時,試求m為何值時,四邊形DMQF是平行四邊形?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知函數y=2mx2+(1﹣4m)x+2m﹣1,下列結論錯誤的是( )
A. 當m=0時,y隨x的增大而增大
B. 當m=時,函數圖象的頂點坐標是(
,﹣
)
C. 當m=﹣1時,若x<,則y隨x的增大而減小
D. 無論m取何值,函數圖象都經過同一個點
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】甲、乙兩同學的家與學校的距離均為3200米.甲同學先步行200米,然后乘公交車去學校,乙同學騎自行車去學校.已知甲步行速度是乙騎自行車速度的,公交車的速度是乙騎自行車速度的3倍.甲、乙兩同學同時從家出發去學校,結果甲同學比乙同學早到8分鐘.
(1)求乙騎自行車的速度;
(2)當甲到達學校時,乙同學離學校還有多遠?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某店只銷售某種進價為40元/kg的產品,已知該店按60元kg出售時,每天可售出100kg,后來經過市場調查發現,單價每降低1元,則每天的銷售量可增加10kg.
(1)若單價降低2元,則每天的銷售量是_____千克,每天的利潤為_____元;若單價降低x元,則每天的銷售量是_____千克,每天的利潤為______元;(用含x的代數式表示)
(2)若該店銷售這種產品計劃每天獲利2240元,單價應降價多少元?
(3)當單價降低多少元時,該店每天的利潤最大,最大利潤是多少元?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知:△ABC在直角坐標平面內,三個頂點的坐標分別為A(0,3)、B(3,4)、C(2,2)(正方形網格中每個小正方形的邊長是一個單位長度).
(1)畫出△ABC向下平移4個單位長度得到的△A1B1C1,點C1的坐標是 ;
(2)以點B為位似中心,在網格內畫出△A2B2C2,使△A2B2C2與△ABC位似,且位似比為2:1,點C2的坐標是 .
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com