精英家教網 > 初中數學 > 題目詳情

【題目】如圖,A、P、B、C是⊙O上四點,∠APC=CPB=60°

1)求證:ABC是等邊三角形;

2)連接OA,OB,當點P位于什么位置時,四邊形PBOA是菱形?并說明理由;

3)已知PA=aPB=b,求PC的長(用含ab的式子表示).

【答案】(1)證明見解析;(2)當點P位于的中點時,四邊形PBOA是菱形,理由見解析;(3a+b

【解析】

1)利用圓周角定理得到∠BAC=∠CPB60°,則∠ABC=∠BAC=∠ACB60°,從而可判斷△ABC為等邊三角形;

2)當點P位于的中點時,四邊形PBOA是菱形,連接OP,如圖1,先證明∠AOP=∠BOP60°,再證明△OAP和△OBP都為等邊三角形,從而得到四邊形PBOA是菱形;

3)如圖2,在PC上截取PDPA,證明△APB≌△ADC得到PBDC,從而得到PCPDDCPAPBab

1)證明:∵∠BAC=∠CPB=60°,

∠ABC=∠APC=60°,.

∴∠ABC=∠BAC=∠ACB=60°,

∴△ABC為等邊三角形;

(2)解:當點P位于的中點時,四邊形PBOA是菱形.

理由如下:連接OP,

∵∠AOB=2∠ACB=120°,P是的中點,

∴∠AOP=∠BOP=60°

∵OA=OP=OB

∴△OAP△OBP都為等邊三角形,

∴OA=AP=OB=PB

四邊形PBOA是菱形.

3)解:如圖2,在PC上截取PDPA,

又∵∠APC60°,

∴△APD是等邊三角形,

PADA,∠DAP60°,

∵∠PAB+∠BAD=∠BAD+∠DAC,

∴∠PAB=∠DAC,

在△APB和△ADC

,

∴△APB≌△ADCASA),

PBDC,

又∵PAPD

PCPDDCPAPBab

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】在平面直角坐標系中,拋物線x軸交于A、B兩點(點A在點B的左側),與y軸交于點C.

(1)求點A的坐標;

(2)當SABC=15時,求該拋物線的表達式;

(3)在(2)的條件下,經過點C的直線與拋物線的另一個交點為D.該拋物線在直線上方的部分與線段CD組成一個新函數的圖象。請結合圖象回答:若新函數的最小值大于﹣8,求k的取值范圍.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】為了增強學生體質,某校對學生設置了體操、球類、跑步、游泳等課外體育活動,為了了解學生對這些項目的喜愛情況,在全校范圍內隨機抽取了若干名學生,對他們最喜愛的體育項目(每人只選一項)進行了問卷調查,將數據進行了統計并繪制成了如圖所示的頻數分布直方圖和扇形統計圖(均不完整).

1)在這次問卷調查中,一共抽查了多少名學生?

2)補全頻數分布直方圖,求出扇形統計圖中體操所對應的圓心角度數;

3)估計該校名學生中有多少人喜愛跑步項目.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某校為選拔一名選手參加美麗邵陽,我為家鄉做代言主題演講比賽,經研究,按圖所示的項目和權數對選拔賽參賽選手進行考評(因排版原因統計圖不完整).下表是李明、張華在選拔賽中的得分情況:

項目

選手

服裝

普通話

主題

演講技巧

李明

85

70

80

85

張華

90

75

75

80

結合以上信息,回答下列問題:

(1)求服裝項目的權數及普通話項目對應扇形的圓心角大小;

(2)求李明在選拔賽中四個項目所得分數的眾數和中位數;

(3)根據你所學的知識,幫助學校在李明、張華兩人中選擇一人參加美麗邵陽,我為家鄉做代言主題演講比賽,并說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖是拋物線型拱橋,當拱頂離水面2m時,水面寬4m,水面下降2m,水面寬度增加______m.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,AB是⊙O的直徑,⊙OAC的中點D,DE切⊙O于點D,交BCE

1)求證DEBC

2)若⊙O的半徑為5,BE2,求DE的長度.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,四邊形ABCD內接于⊙OAB=AC,BDAC,垂足為E,點FBD的延長線上,且DF=DC,連接AF、CF.

(1)求證:∠BAC=2DAC

(2)AF10,BC4,求tanBAD的值.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,正方形ABCD中,EBC上的一點,連接AE,過B點作BHAE,垂足為點H,延長BHCD于點F,連接AF

1)求證:AE=BF;

2)若正方形邊長為5,BE=2,求sinDAF的值.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖是小明利用等腰直角三角板測量旗桿高度的示意圖.等腰直角三角板的斜邊BD與地面AF平行,當小明的視線恰好沿BC經過旗桿頂部點E時,測量出此時他所在的位置點A與旗桿底部點F的距離為10米.如果小明的眼睛距離地面1.7米,那么旗桿EF的高度為( 。

A. 10米 B. 11.7米 C. 10 D. (5+1.7)米

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视