【題目】如圖,在△ABC 中,AB=AC,∠BAC=120°,AC 的垂直平分線交 BC 于 F,交 AC 于 E,交 BA 的延長線于 G,若 EG=3,則 BF 的長是______.
【答案】4
【解析】
根據線段垂直平分線得出AE=EC,∠AEG=∠AEF=90°,求出∠B=∠C=∠G=30°,根據勾股定理和含30°角的直角三角形性質求出AE和EF,即可求出FG,再求出BF=FG即可
∵AC的垂直平分線FG,
∴AE=EC,∠AEG=∠AEF=90°,
∵∠BAC=120°,
∴∠G=∠BAC-∠AEG=120°-90°=30°,
∵∠BAC=120°,AB=AC,
∴∠B=∠C=(180°-∠BAC)=30°,
∴∠B=∠G,
∴BF=FG,
∵在Rt△AEG中,∠G=30°,EG=3,
∴AG=2AE,
即(2AE)2=AE2+32,
∴AE=(負值舍去)
即CE=,
同理在Rt△CEF中,∠C=30°,CF=2EF,
(2EF)2=EF2+()2,
∴EF=1(負值舍去),
∴BF=GF=EF+CE=1+3=4,
故答案為:4.
科目:初中數學 來源: 題型:
【題目】定義:至少有一組對邊相等的四邊形為“等對邊四邊形”.
(1)請寫出一個你學過的特殊四邊形中是“等對邊四邊形”的名稱;
(2)如圖1,四邊形ABCD是“等對邊四邊形”,其中AB=CD,邊BA與CD的延長線交于點M,點E、F是對角線AC、BD的中點,若∠M=60°,求證:EFAB;
(3)如圖2.在△ABC中,點D、E分別在邊AC、AB上,且滿足∠DBC=∠ECB∠A,線段CE、BD交于點.
①求證:∠BDC=∠AEC;
②請在圖中找到一個“等對邊四邊形”,并給出證明.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】尺規作圖及探究:
已知:線段AB=a.
(1)完成尺規作圖:
點P在線段AB所在直線上方,PA=PB,且點P到AB的距離等于,連接PA,PB,在線段AB上找到一點Q使得QB=PB,連接PQ,并直接回答∠PQB的度數;
(2)若將(1)中的條件“點P到AB的距離等于”替換為“PB取得最大值”,其余所有條件都不變,此時點P的位置記為
,點Q的位置記為
,連接
,并直接回答∠
的度數.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖△ABC 的∠ABC 的外角平分線 BD 與∠ACB 的外角平分線 CE 交于 P,過 P 作 MN∥AB 交 AC 于M,交 BC 于 N,且 AM=8,BN=5,則 MN=( )
A. 2B. 3C. 4D. 5
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,(圖1,圖2),四邊形ABCD是邊長為4的正方形,點E在線段BC上,∠AEF=90°,且EF交正方形外角平分線CP于點F,交BC的延長線于點N, FN⊥BC.
(1)若點E是BC的中點(如圖1),AE與EF相等嗎?
(2)點E在BC間運動時(如圖2),設BE=x,△ECF的面積為y。
①求y與x的函數關系式;
②當x取何值時,y有最大值,并求出這個最大值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,利用關于坐標系軸對稱的點的坐標的特點.
(1)畫出與△ABC 關于 y 軸對稱的圖形△A1B1C1;
(2)寫出各點坐標:△A1( ),B1( ),C1 ( ).
(3)直接寫出△ABC 的面積______.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某中學九年級舞蹈興趣小組8名學生的身高分別為(單位:cm):168,165,168,166,170,170,175,170,則下列說法錯誤的是( 。
A. 這組數據的平均數是169 B. 這組數據的眾數是170
C. 這組數據的中位數是169 D. 這組數據的方差是66
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,為測量江兩岸碼頭B、D之間的距離,從山坡上高度為50米的A處測得碼頭B的俯角∠EAB為15°,碼頭D的俯角∠EAD為45°,點C在線段BD的延長線上,AC⊥BC,垂足為C,求碼頭B、D的距離(結果保留整數).
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com