【題目】如圖,在矩形紙片ABCD中,點P在邊AB上,沿著PC折疊紙片使B點落在邊AD上的E點處,過點E作EF∥AB交PC于F,連接BF.
(1)求證:四邊形BFEP為菱形;
(2)若tan∠BCP=,AB=3cm,求AE的長.
【答案】(1)詳見解析;(2)AE=1 cm.
【解析】
(1)由折疊的性質得出PB=PE,BF=EF,∠BPF=∠EPF,由平行線的性質得出∠BPF=∠EFP,證出∠EPF=∠EFP,得出EP=EF,所以BP=BF=EF=EP,即可得出結論;(2)由折疊可知,∠BCP=∠ECP,根據已知可得tan∠ECP =tan∠BCP=,根據銳角三角函數的定義可得
,再證明△APE∽△DEC,根據相似三角形的性質可得
.再由AB=DC=3cm,即可求得AE=1 cm.
(1)證明:∵折疊紙片使B點落在邊AD上的E處,折痕為PC,
∴B點與E點關于PQ對稱.
∴BP=PE,BF=FE,∠BPF=∠EPF.
又∵EF∥AB,
∴∠BPF=∠EFP.
∴∠EPF=∠EFP.
∴EP=EF.
∴BP=BF=FE=EP.
∴四邊形BFEP為菱形.
(2)由折疊可知,∠BCP=∠ECP.
∴.
∴,
∵∠PEC=∠A=∠D=90°.
∴∠AEP+∠DEC=90°,∠AEP+∠APE=90°.
∴∠APE=∠DEC.
∴△APE∽△DEC.
∴.
∵AB=DC=3cm,
∴AE=1 cm.
科目:初中數學 來源: 題型:
【題目】如圖,已知△ABE與△CDE都是等腰直角三角形,∠AEB=∠DEC=90°,連接AD,AC,BC,BD,若AD=AC=AB,則下列結論:①AE垂直平分CD,②AC平分∠BAD,③△ABD是等邊三角形,④∠BCD的度數為150°,其中正確的個數是( )
A.1B.2C.3D.4
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在方格中的位置如圖所示.
(1)請在方格紙上(小方格的邊長為1)建立平面直角坐標系,使得A、B兩點的坐標分別為,
.并求出C點的坐標;
(2)作出關于x軸對稱的
,并寫出
、
兩點的坐標.
(3)求的面積。
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】直角三角形紙片ABC中,∠ACB=90°,AC≤BC,如圖,將紙片沿某條直線折疊,使點A落在直角邊BC上,記落點為D,設折痕與AB、AC邊分別交于點E、F.
(1)如果∠AFE=65°,求∠CDF的度數;
(2)若折疊后的△CDF與△BDE均為等腰三角形,那么紙片中∠B的度數是多少?寫出你的計算過程,并畫出符合條件的折疊后的圖形.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】閱讀對學生的成長有著深遠的影響,某中學為了解學生每周課余閱讀的時間,在本校隨機抽取了若干名學生進行調查,并依據調查結果繪制了以下不完整的統計圖表.
組別 | 時間(小時) | 頻數(人數) | 頻率 |
A | 0≤t≤0.5 | 6 | 0.15 |
B | 0.5≤t≤1 | a | 0.3 |
C | 1≤t≤1.5 | 10 | 0.25 |
D | 1.5≤t≤2 | 8 | b |
E | 2≤t≤2.5 | 4 | 0.1 |
合計 | 1 |
請根據圖表中的信息,解答下列問題:
(1)表中的a= ,b= ,中位數落在 組,將頻數分布直方圖補全;
(2)估計該校2000名學生中,每周課余閱讀時間不足0.5小時的學生大約有多少名?
(3)E組的4人中,有1名男生和3名女生,該校計劃在E組學生中隨機選出兩人向全校同學作讀書心得報告,請用畫樹狀圖或列表法求抽取的兩名學生剛好是1名男生和1名女生的概率.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,從A地到B地的公路需要經過C地,根據規劃,將在A,B兩地之間修建一條筆直的公路.已知AC=10千米,∠CAB=34°,∠CBA=45°,求改直后公路AB的長(結果精確到0.1千米)
(參考數據:sin34°≈0.559,cos34°≈0.829,tan34°≈0.675)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,BD是△ABC的角平分線,過點D作DE∥BC交AB于點E,DF∥AB交BC于點F.
(1)求證:四邊形BEDF為菱形;
(2)如果∠A=90°,∠C=30°,BD=12,求菱形BEDF的面積.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在菱形ABCD中,E、F分別是AB、BC邊的中點,EP⊥CD于點P,∠BAD=110°,則∠FPC的度數是( )
A. 35° B. 45° C. 50° D. 55°
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com