【題目】如圖,貴陽市某中學數學活動小組在學習了“利用三角函數測高”后.選定測量小河對岸一幢建筑物BC的高度.他們先在斜坡上的D處,測得建筑物頂的仰角為30°.且D離地面的高度DE=5m.坡底EA=10m,然后在A處測得建筑物頂B的仰角是50°,點E,A,C在同一水平線上,求建筑物BC的高.(結果保留整數)
【答案】解:過點D作DH⊥BC于點M,如圖所示:
則四邊形DHCE是矩形,DH=EC,DE=HC,
設建筑物BC的高度為xm,則BH=(x﹣5)m,
在Rt△DHB中,∠BDH=30°,
∴DH= (x﹣5),AC=EC﹣EA=
(x﹣5)﹣10,
在Rt△ACB中,∠BAC=50°,tan∠BAC= ,
∴x=tan50°[ (x﹣5)],
解得:x≈21,
答:建筑物BC的高約為21m.
【解析】首先過點D作DH⊥BC,垂直為H,依據有三個角為直角的四邊形為矩形可得到四邊形DHCE是矩形,然后依據矩形的性質得到DH=EC,DE=HC,設建筑物BC的高度為xm,則BH=(x-5)m,由三角函數得出DH=
(x-5),AC=EC-EA求得AC的長,然后依據銳角三角形函數的定義列出關于x的方程即可.
科目:初中數學 來源: 題型:
【題目】現在,某商場進行促銷活動,出售一種優惠購物卡(注:此卡只作為購物優惠憑證不能頂替貨款),花300元買這種卡后,憑卡可在這家商場按標價的8折購物.
(1)顧客購買多少元金額的商品時,買卡與不買卡花錢相等?在什么情況下購物合算?
(2)小張要買一臺標價為3500元的冰箱,如何購買合算?小張能節省多少元錢?
(3)小張按合算的方案,把這臺冰箱買下,如果紅旗商場還能盈利25%,這臺冰箱的進價是多少元?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖:已知.
(1)讀句畫圖:畫的角平分線
、
交
、
于點
、
,且
、
交于點
,過
點作
交
的延長線于
.
(2)在(1)的條件下解決下面問題:
①填表
| |||
| __________ | ______________ | ______________ |
②根據圖中的數據,你發現無論是什么角,
總是__________(填銳角、鈍角或直角).
③若過點作
于
,你能猜想
與
之間的數量關系嗎?說明理由.(在(1)中的圖上作
于
)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在圖1至圖3中,點B是線段AC的中點,點D是線段CE的中點.四邊形BCGF和四邊形CDHN都是正方形.AE的中點是M.
(1)如圖1,點E在AC的延長線上,點N與點G重合時,點M與點C重合,求證:FM=MH,FM⊥MH;
(2)將圖1中的CE繞點C順時針旋轉一個銳角,得到圖2,求證:△FMH是等腰直角三角形;
(3)將圖2中的CE縮短到圖3的情況,△FMH還是等腰直角三角形嗎?(不必說明理由)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖1,在Rt△ABC中,∠C=90°,BC=8厘米,點D在AC上,CD=3厘米.點P、Q分別由A、C兩點同時出發,點P沿AC方向向點C勻速移動,速度為每秒k厘米,行完AC全程用時8秒;點Q沿CB方向向點B勻速移動,速度為每秒1厘米.設運動的時間為x秒(0<x<8),△DCQ的面積為y1平方厘米,△PCQ的面積為y2平方厘米.
(1)求y1與x的函數關系,并在圖2中畫出y1的圖象;
(2)如圖2,y2的圖象是拋物線的一部分,其頂點坐標是(4,12),求點P的速度及AC的長;
(3)在圖2中,點G是x軸正半軸上一點0<OG<6,過G作EF垂直于x軸,分別交y1、y2的圖象于點E、F.
①說出線段EF的長在圖1中所表示的實際意義;
②當0<x<6時,求線段EF長的最大值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知同一平面內,
.
(1)問題發現:的余角是_____,
的度數是_____;
(2)拓展探究:若平分
,
平分
,則
的度數是_____.
(3)類比延伸:在(2)的條件下,如果將題目中的改為
;
改為
,其他條件不變,你能求出
嗎?若能,請你寫出求解過程;若不能,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC中,∠A=48°,∠ABC與∠ACD的平分線交于點A1,得∠A1;∠A1BC與∠A1CD的平分線相交于點A2,得∠A2;……;∠An-1BC與∠An-1CD的平分線交于點An,要使∠An的度數為整數,則n的最大值為( )
A.2B.3C.4D.5
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,直線y=﹣ x+2
與x軸,y軸分別交于點A,點B,兩動點D,E分別從點A,點B同時出發向點O運動(運動到點O停止),運動速度分別是1個單位長度/秒和
個單位長度/秒,設運動時間為t秒,以點A為頂點的拋物線經過點E,過點E作x軸的平行線,與拋物線的另一個交點為點G,與AB相交于點F.
(1)求點A,點B的坐標;
(2)用含t的代數式分別表示EF和AF的長;
(3)當四邊形ADEF為菱形時,試判斷△AFG與△AGB是否相似,并說明理由.
(4)是否存在t的值,使△AGF為直角三角形?若存在,求出這時拋物線的解析式;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com