精英家教網 > 初中數學 > 題目詳情

【題目】現在,某商場進行促銷活動,出售一種優惠購物卡(注:此卡只作為購物優惠憑證不能頂替貨款),花300元買這種卡后,憑卡可在這家商場按標價的8折購物.

1)顧客購買多少元金額的商品時,買卡與不買卡花錢相等?在什么情況下購物合算?

2)小張要買一臺標價為3500元的冰箱,如何購買合算?小張能節省多少元錢?

3)小張按合算的方案,把這臺冰箱買下,如果紅旗商場還能盈利25%,這臺冰箱的進價是多少元?

【答案】1)當顧客消費等于1500元時買卡與不買卡花錢相等;當顧客消費大于1500元時買卡合算;(2)小張買卡合算,能節省400元錢;(3)這臺冰箱的進價是2480元.

【解析】

1)設顧客購買x元金額的商品時,買卡與不買卡花錢相等,根據花300元買這種卡后,憑卡可在這家商場按標價的8折購物,列出方程,解方程即可;根據x的值說明在什么情況下購物合算
2)根據(1)中所求即可得出怎樣購買合算,以及節省的錢數;

3)設進價為y元,根據售價-進價=利潤,則可得出方程即可.

解:設顧客購買x元金額的商品時,買卡與不買卡花錢相等.

根據題意,得300+0.8xx,

解得x1500

所以當顧客消費等于1500元時,買卡與不買卡花錢相等;

當顧客消費少于1500元時,300+0.8xx不買卡合算;

當顧客消費大于1500元時,300+0.8xx買卡合算;

2)小張買卡合算,

3500﹣(300+3500×0.8)=400,

所以,小張能節省400元錢;

3)設進價為y元,根據題意,得

300+3500×0.8)﹣y25%y

解得 y2480

答:這臺冰箱的進價是2480元.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】從﹣3,﹣1, ,1,3這五個數中,隨機抽取一個數,記為a,若數a使關于x的不等式組 無解,且使關于x的分式方程 =﹣1有整數解,那么這5個數中所有滿足條件的a的值之和是(
A.﹣2
B.﹣3
C.
D.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知反比例函數的圖象的一支位于第一象限.

(1)判斷該函數圖象的另一支所在的象限,并求m的取值范圍;

(2)如圖,O為坐標原點,點A在該反比例函數位于第一象限的圖象上,點B與點A關于軸對稱,若△OAB的面積為6,求m的值.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】下列說法中,正確的個數有( 。

①已知直角三角形的面積為2,兩直角邊的比為12,則斜邊長為

②直角三角形的最大邊長為,最短邊長為1,則另一邊長為;

③在△ABC中,若∠A:∠B:∠C=1:56,則△ABC為直角三角形;

④等腰三角形面積為12,底邊上的高為4,則腰長為5

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】閱讀下面材料: 上課時李老師提出這樣一個問題:對于任意實數x,關于x的不等式x2﹣2x﹣1﹣a>0恒成立,求a的取值范圍.
小捷的思路是:原不等式等價于x2﹣2x﹣1>a,設函數y1=x2﹣2x﹣1,y2=a,畫出兩個函數的圖象的示意圖,于是原問題轉化為函數y1的圖象在y2的圖象上方時a的取值范圍.

請結合小捷的思路回答:
對于任意實數x,關于x的不等式x2﹣2x﹣1﹣a>0恒成立,則a的取值范圍是.
參考小捷思考問題的方法,解決問題:
關于x的方程x﹣4= 在0<a<4范圍內有兩個解,求a的取值范圍.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖1,二次函數y=ax2+bx+3 經過點A(3,0),G(﹣1,0)兩點.

(1)求這個二次函數的解析式;
(2)若點M時拋物線在第一象限圖象上的一點,求△ABM面積的最大值;
(3)拋物線的對稱軸交x軸于點P,過點E(0, )作x軸的平行線,交AB于點F,是否存在著點Q,使得△FEQ∽△BEP?若存在,請直接寫出點Q的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,等邊ABC中,AD是BAC的角平分線,E為AD上一點,以BE為一邊且在BE下方作等邊BEF,連接CF.

(1)求證:AE=CF;

(2)求ACF的度數.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】將△ABC繞點B逆時針旋轉到△A′BC′,使A、B、C′在同一直線上,若∠BCA=90°,∠BAC=30°,AB=4cm,則圖中陰影部分面積為cm2

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,貴陽市某中學數學活動小組在學習了“利用三角函數測高”后.選定測量小河對岸一幢建筑物BC的高度.他們先在斜坡上的D處,測得建筑物頂的仰角為30°.且D離地面的高度DE=5m.坡底EA=10m,然后在A處測得建筑物頂B的仰角是50°,點E,A,C在同一水平線上,求建筑物BC的高.(結果保留整數)

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视