【題目】若拋物線L:y=ax2+bx+c(a,b,c是常數,abc≠0)與直線l都經過y軸上的一點P,且拋物線L的頂點Q在直線l上,則稱此直線l與該拋物線L具有“一帶一路”關系.此時,直線l叫做拋物線L的“帶線”,拋物線L叫做直線l的“路線”.
(1)若直線y=mx+1與拋物線y=x2﹣2x+n具有“一帶一路”關系,求m,n的值;
(2)若某“路線”L的頂點在反比例函數y=的圖象上,它的“帶線”l的解析式為y=2x﹣4,求此“路線”L的解析式;
(3)當常數k滿足≤k≤2時,求拋物線L:y=ax2+(3k2﹣2k+1)x+k的“帶線”l與x軸,y軸所圍成的三角形面積的取值范圍.
【答案】(1)m的值為﹣1,n的值為1.(2)y=2(x+1)2﹣6或y=﹣(x﹣3)2+2.(3)
≤S≤
.
【解析】
試題分析:(1)確定直線y=mx+1與y軸的交點坐標,將其代入拋物線解析式中即可求出n的值;再根據拋物線的解析式找出頂點坐標,將其代入直線解析式中即可得出結論;(2)確定直線與反比例函數圖象的交點坐標,由此設出拋物線的解析式,再由直線的解析式找出直線與x軸的交點坐標,將其代入拋物線解析式中即可得出結論;(3)由拋物線解析式找出拋物線與y軸的交點坐標,再根據拋物線的解析式找出其頂點坐標,由兩點坐標結合待定系數法即可得出與該拋物線對應的“帶線”l的解析式,找出該直線與x、y軸的交點坐標,結合三角形的面積找出面積S關于k的關系上,由二次函數的性質即可得出結論.
試題解析:(1)令直線y=mx+1中x=0,則y=1,
即直線與y軸的交點為(0,1);
將(0,1)代入拋物線y=x2﹣2x+n中,
得n=1.
∵拋物線的解析式為y=x2﹣2x+1=(x﹣1)2,
∴拋物線的頂點坐標為(1,0).
將點(1,0)代入到直線y=mx+1中,
得:0=m+1,解得:m=﹣1.
答:m的值為﹣1,n的值為1.
(2)將y=2x﹣4代入到y=中有,
2x﹣4=,即2x2﹣4x﹣6=0,
解得:x1=﹣1,x2=3.
∴該“路線”L的頂點坐標為(﹣1,﹣6)或(3,2).
令“帶線”l:y=2x﹣4中x=0,則y=﹣4,
∴“路線”L的圖象過點(0,﹣4).
設該“路線”L的解析式為y=m(x+1)2﹣6或y=n(x﹣3)2+2,
由題意得:﹣4=m(0+1)2﹣6或﹣4=n(0﹣3)2+2,
解得:m=2,n=﹣.
∴此“路線”L的解析式為y=2(x+1)2﹣6或y=﹣(x﹣3)2+2.
(3)令拋物線L:y=ax2+(3k2﹣2k+1)x+k中x=0,則y=k,
即該拋物線與y軸的交點為(0,k).
拋物線L:y=ax2+(3k2﹣2k+1)x+k的頂點坐標為(﹣,
),
設“帶線”l的解析式為y=px+k,
∵點(﹣,
)在y=px+k上,
∴=﹣p
+k,
解得:p=.
∴“帶線”l的解析式為y=x+k.
令∴“帶線”l:y=x+k中y=0,則0=
x+k,
解得:x=﹣.
即“帶線”l與x軸的交點為(﹣,0),與y軸的交點為(0,k).
∴“帶線”l與x軸,y軸所圍成的三角形面積S=|﹣
|×|k|,
∵≤k≤2,
∴≤
≤2,
∴S==
=
,
當=1時,S有最大值,最大值為
;
當=2時,S有最小值,最小值為
.
故拋物線L:y=ax2+(3k2﹣2k+1)x+k的“帶線”l與x軸,y軸所圍成的三角形面積的取值范圍為≤S≤
.
科目:初中數學 來源: 題型:
【題目】為了培養學生的閱讀習慣,某校開展了“讀好書,助成長”系列活動,并準備購置一批圖書,購書前 ,對學生喜歡閱讀的圖書類型進行了抽樣調查,并將調查數據繪制成兩幅不完整的統計圖,如圖所示,根據統計圖所提供的信息,回答下列問題:
(1)本次調查共抽查了 名學生,兩幅統計圖中的m= ,n= .
(2)已知該校共有960名學生,請估計該校喜歡閱讀“A”類圖書的學生約有多少人?
(3)學校要舉辦讀書知識競賽,七年(1)班要在班級優勝者2男1女中隨機選送2人參賽,求選送的兩名參賽學生為1男1女的概率是多少?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,一次函數y=kx+b的圖象分別與反比例函數y=的圖象在第一象限交于點A(4,3),與y軸的負半軸交于點B,且OA=OB.
(1)求函數y=kx+b和y=的表達式;
(2)已知點C(0,5),試在該一次函數圖象上確定一點M,使得MB=MC,求此時點M的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】直角三角板ABC中,∠A=30°,BC=1.將其繞直角頂點C逆時針旋轉一個角(
且
),得到Rt△
.
(1)如圖,當邊經過點B時,求旋轉角
的度數;
(2)在三角板旋轉的過程中,邊與AB所在直線交于點D,過點 D作DE∥
交
邊于點E,聯結BE.
①當時,設AD=
,BE=
,求
與
之間的函數解析式及自變量
的取值范圍;
②當時,求AD的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖1,∠MON=90°,點A、B分別在OM、ON上運動(不與點O重合).
(1)若BC是∠ABN的平分線,BC的反方向延長線與∠BAO的平分線交與點D. ①若∠BAO=60°,則∠D=°.
②猜想:∠D的度數是否隨A,B的移動發生變化?并說明理由 .
(2)若∠ABC= ∠ABN,∠BAD=
∠BAO,則∠D=°.
(3)若將“∠MON=90°”改為“∠MON=α(0°<α<180°)”,∠ABC= ∠ABN,∠BAD=
∠BAO,其余條件不變,則∠D=°(用含α、n的代數式表示)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,一次函數y=kx+b(k≠0)的圖象與反比例函數(m≠0)的圖象交于A、B兩點,與x軸交于C點,點A的坐標為(n,6),點C的坐標為(﹣2,0),且tan∠ACO=2.
(1)求該反比例函數和一次函數的解析式;
(2)求點B的坐標.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com