精英家教網 > 初中數學 > 題目詳情

【題目】已知關于的一元二次方程有實數根.

1)求的取值范圍.

2)若該方程的兩個實數根為,且,求的值.

【答案】1.2.

【解析】

1)根據方程的系數結合根的判別式≥0,即可得出關于m的一元一次不等式,解之即可得出m的取值范圍;
2)由根與系數的關系可得出x1+x2=6,x1x2=4m+1,結合|x1-x2|=4可得出關于m的一元一次方程,解之即可得出m的值.

1)∵關于x的一元二次方程x2-6x+4m+1=0有實數根,

∴△=-62-4×1×4m+1≥0,

解得:m≤2;

2)∵方程x2-6x+4m+1=0的兩個實數根為x1、x2,

x1+x2=6,x1x2=4m+1,

∴(x1-x22=x1+x22-4x1x2=42,即32-16m=16

解得:m=1

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】某校有名學生,為了解全校學生的上學方式,該校數學興趣小組以問卷調查的形式,隨機調查了該校部分學生的主要上學方式(參與問卷調查的學生只能從以下六個種類中選擇一類),并將調查結果繪制成如下不完整的統計圖.

根據以上信息,回答下列問題:

1)參與本次問卷調查的學生共有_____人,其中選擇類的人數有_____人;

2)在扇形統計圖中,求類對應的扇形圓心角的度數,并補全條形統計圖;

3)若將這四類上學方式視為“綠色出行”,請估計該校選擇“綠色出行”的學生人數.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,平行四邊形ABCD中,AB3,BC2,∠DAB60°,EAB上,且AEEB,FBC的中點,過D分別作DPAFP,DQCEQ,則DPDQ的值為_____

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】紅旗連鎖超市準備購進甲、乙兩種綠色袋裝食品.甲、乙兩種綠色袋裝食品的進價和售價如表.已知:用2000元購進甲種袋裝食品的數量與用1600元購進乙種袋裝食品的數量相同.

進價(元/袋)

售價(元/袋)

20

13

1)求的值;

2)要使購進的甲、乙兩種綠色袋裝食品共800袋的總利潤(利潤=售價-進價)不少于4800元,且不超過4900元,問該超市有幾種進貨方案?

3)在(2)的條件下,該超市如果對甲種袋裝食品每袋優惠元出售,乙種袋裝食品價格不變.那么該超市要獲得最大利潤應如何進貨?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,拋物線y=ax2+bx+c經過點(﹣1,0),對稱軸l如圖所示,則下列結論:abc>0;a﹣b+c=0;2a+c<0;a+b<0,其中所有正確的結論是(

A.①③ B.②③ C.②④ D.②③④

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,二次函數的圖象交軸于兩點,交軸于點,點的坐標為,頂點的坐標為

(1)求二次函數的解析式和直線的解析式;

(2)點是直線上的一個動點,過點軸的垂線,交拋物線于點,當點在第一象限時,求線段長度的最大值;

(3)在拋物線上是否存在異于的點,使邊上的高為,若存在求出點的坐標;若不存在請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在正方形ABCD中,對角線AC、BD相交于點O,EF分別在OD、OC上,且DE=CF,連接DF、AE,AE的延長線交DF于點M

1)求證:AE=DF;

2)求證:AMDF

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知拋物線的對稱軸是直線且與軸相交于兩點,與軸交于點的坐標為

求拋物線的解析式;

若點是第一象限內拋物線上一點,過點作直線軸于點交直線于點時,求四邊形的面積.

的條件下,若點在拋物線上,點在拋物線的對稱軸上,當以點為頂點的四邊形是平行四邊形時,求出所有符合條件的點的坐標.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,是⊙的直徑,是⊙的一條弦,,的延長線交⊙于點,交的延長線于點,連接,且恰好,連接于點,延長于點,連接

1)求證:是⊙的切線;

2)求證:點的中點;

3)當⊙的半徑為時,求的值.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视