【題目】如圖,在⊙O中,B,P,A,C是圓上的點,PB= PC, PD⊥CD,CD交⊙O于A,若AC=AD,PD =,sin∠PAD =
,則△PAB的面積為_______.
【答案】2
【解析】分析: 連接PC PB PA,過P做BA垂線于H點,根據PB=PC,再由全等三角形的判定定理可得出△PBH≌△PCD,Rt△PHA≌Rt△PDA,根據AC=AD=1即可得出結論.
詳解: 連接PC PB PA,過P做BA垂線于H點,
∵PD⊥CD, PD =,sin∠PAD =
,
∴AP=,AD=1,
∵AC=AD,
∴CD=2.
在△PBH與△PCD中,
∠B=∠C
PB=PC
∠BPH=∠DPC,
∴△PBH≌△PCD(ASA),
∴BH=CD=2,PH=PD=,
∴AH=,
∴△PAB的面積為AB×PH×=(2+1)×
×
=2,
故答案為:2.
點睛:
本題考查的是圓周角定理及全等三角形的判定與性質,根據題意作出輔助線,構造出全等三角形是解答此題的關鍵.
科目:初中數學 來源: 題型:
【題目】已知A、B、C三點在數軸上的位置如圖所示,它們表示的數分別是a、b、c
(1) 填空:abc________0,a+b________ac,ab-ac________0;(填“>”,“=”或“<”)
(2) 若|a|=2,且點B到點A、C的距離相等
① 當b2=16時,求c的值
② 求b、c之間的數量關系
③ P是數軸上B,C兩點之間的一個動點設點P表示的數為x.當P點在運動過程中,bx+cx+|x-c|-10|x+a|的值保持不變,求b的值
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,菱形ABCD中,AB=1,∠A=60°,EFGH是矩形,矩形的頂點都在菱形的邊上.設AE=AH=x(0<x<1),矩形的面積為S.
(1)求S關于x的函數解析式;
(2)當EFGH是正方形時,求S的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,直線AE、CF分別被直線EF、AC所截,已知,∠1=∠2,AB平分∠EAC,CD平分∠ACG.將下列證明AB∥CD的過程及理由填寫完整.
證明:∵ ∠1="∠2" ( 已知 )
∴ AE∥ ( )
∴ ∠EAC =∠ ,( )
而AB平分∠EAC,CD平分∠ACG( 已知 )
∴∠ =∠EAC,∠4=
∠ ( 角平分線的定義 )
∴∠ =∠4(等量代換)
∴AB∥CD( ).
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】(閱讀理解):A,B,C為數軸上三點,若點C到A的距離CA是點C到B的距離CB的2倍,我們就稱點C是(A,B)的好點.例如,如圖1,點A表示的數為-1,點B表示的數為2.表示1的點C到點A的距離CA是2,到點B的距離CB是1,那么點C是(A,B)的好點;又如,表示0的點D到點A的距離DA是1,到點B的距離DB是2,那么點D就不是(A,B)的好點,但點D是(B,A)的好點.
(知識運用):(1)如圖1,表示數______和_______的點是(A,B)的好點;
(2)如圖2,M、N為數軸上兩點,點M所表示的數為-2,點N所表示的數為4.
①表示數______的點是(M,N)的好點;
②表示數______的點是(N,M)的好點;
(3)如圖3,A、B為數軸上兩點,點A所表示的數為-20,點B所表示的數為40.現有一只電子螞蟻P從點B出發,以2個單位每秒的速度向左運動.當t為何值時,P、A和B中恰有一個點為其余兩點的好點?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某校八年級學生小麗、小強和小紅到某超市參加了社會實踐活動,在活動中他們參與了某種水果的銷售工作.已知該水果的進價為8元/千克,下面是他們在活動結束后的對話.
小麗:如果以10元/千克的價格銷售,那么每天可售出300千克.
小強:如果每千克的利潤為3元,那么每天可售出250千克.
小紅:如果以13元/千克的價格銷售,那么每天可獲取利潤750元.
【利潤=(銷售價-進價)銷售量】
(1)請根據他們的對話填寫下表:
銷售單價x(元/kg) | 10 | 11 | 13 |
銷售量y(kg) |
(2)請你根據表格中的信息判斷每天的銷售量y(千克)與銷售單價x(元)之間存在怎樣的函數關系.并求y(千克)與x(元)(x>0)的函數關系式;
(3)設該超市銷售這種水果每天獲取的利潤為W元,求W與x的函數關系式.當銷售單價為何值時,每天可獲得的利潤最大?最大利潤是多少元?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某圖書館計劃選購甲、乙兩種圖書.甲圖書每本價格是乙圖書每本價格的2.5倍,如果用900元購買圖書,則單獨購買甲圖書比單獨購買乙圖書要少18本.
(1)甲、乙兩種圖書每本價格分別為多少元?
(2)如果該圖書館計劃購買乙圖書的本數比購買甲圖書本數的2倍多8本,且用于購買甲、乙兩種圖書的總費用不超過1725元,那么該圖書館最多可以購買多少本乙圖書?
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com