【題目】數學活動課上,某學習小組對有一內角為120°的平行四邊形ABCD(∠BAD=120°)進行探究:將一塊含60°的直角三角板如圖放置在平行四邊形ABCD所在平面內旋轉,且60°角的頂點始終與點C重合,較短的直角邊和斜邊所在的兩直線分別交線段AB,AD于點E,F(不包括線段的端點).
(1)初步嘗試
如圖1,若AD=AB,求證:①△BCE≌△ACF,②AE+AF=AC;
(2)類比發現
如圖2,若AD=2AB,過點C作CH⊥AD于點H,求證:AE=2FH;
(3)深入探究
如圖3,若AD=3AB,探究得:的值為常數t,則t= .
【答案】(1)證明見解析;(2)證明見解析;(3).
【解析】
試題分析:(1)①先證明△ABC,△ACD都是等邊三角形,再證明∠BCE=∠ACF即可解決問題.②根據①的結論得到BE=AF,由此即可證明.
(2)設DH=x,由由題意,CD=2x,CH=x,由△ACE∽△HCF,得
由此即可證明.
(3)如圖3中,作CN⊥AD于N,CM⊥BA于M,CM與AD交于點H.先證明△CFN∽△CEM,得,由ABCM=ADCN,AD=3AB,推出CM=3CN,所以
=
,設CN=a,FN=b,則CM=3a,EM=3b,想辦法求出AC,AE+3AF即可解決問題.
試題解析:解;(1)①∵四邊形ABCD是平行四邊形,∠BAD=120°,∴∠D=∠B=60°,∵AD=AB,∴△ABC,△ACD都是等邊三角形,∴∠B=∠CAD=60°,∠ACB=60°,BC=AC,∵∠ECF=60°,∴∠BCE+∠ACE=∠ACF+∠ACE=60°,∴∠BCE=∠ACF,在△BCE和△ACF中,∵∠B=∠CAF,BC=AC,∠BCE=∠ACF,∴△BCE≌△ACF;
②∵△BCE≌△ACF,∴BE=AF,∴AE+AF=AE+BE=AB=AC;
(2)設DH=x,由由題意,CD=2x,CH=x,∴AD=2AB=4x,∴AH=AD﹣DH=3x,∵CH⊥AD,∴AC=
=
x,∴
,∴∠ACD=90°,∴∠BAC=∠ACD=90°,∴∠CAD=30°,∴∠ACH=60°,∵∠ECF=60°,∴∠HCF=∠ACE,∴△ACE∽△HCF,∴
=2,∴AE=2FH.
(3)如圖3中,作CN⊥AD于N,CM⊥BA于M,CM與AD交于點H.
∵∠ECF+∠EAF=180°,∴∠AEC+∠AFC=180°,∵∠AFC+∠CFN=180°,∴∠CFN=∠AEC,∵∠M=∠CNF=90°,∴△CFN∽△CEM,∴,∵ABCM=ADCN,AD=3AB,∴CM=3CN,∴
=
,設CN=a,FN=b,則CM=3a,EM=3b,∵∠MAH=60°,∠M=90°,∴∠AHM=∠CHN=30°,∴HC=2a,HM=a,HN=
a,∴AM=
a,AH=
a,∴AC=
=
a,AE+3AF=(EM﹣AM)+3(AH+HN﹣FN)=EM﹣AM+3AH+3HN﹣3FN=3AH+3HN﹣AM=
a,∴
=
=
.故答案為:
.
科目:初中數學 來源: 題型:
【題目】如果兩個一次函數y=k1x+b1和y=k2x+b2滿足k1=k2,b1≠b2,那么稱這兩個一次函數為“平行一次函數”.如圖,已知函數y=﹣2x+4的圖象與x軸、y軸分別交于A、B兩點,一次函數y=kx+b與y=﹣2x+4是“平行一次函數”.
(1)若函數y=kx+b的圖象過點(3,1),求b的值;
(2)若函數y=kx+b的圖象與兩坐標軸圍成的三角形和△AOB構成位似圖形,位似中心為原點,位似比為1:2,求函數y=kx+b的表達式.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知:如圖1,我們在2016年7月的日歷中標出一個十字星,并計算它的“十字差”(將十字星左右兩數,上下兩數分別相乘再將所得的積作差,稱為該十字星的“十字差”).該十字星的十字差為12×14﹣6×20=48,再選擇其它位置的十字星,可以發現“十字差”仍為48.
(1)如圖2,將正整數依次填入5列的長方形數表中,探究不同位置十字星的“十字差”,可以發現相應的“十字差”也是一個定值,則這個定值為 .
(2)若將正整數依次填入6列的長方形數表中,不同位置十字星的“十字差”是一個定值嗎?如果是,請求出這個定值;如果不是,請說明理由.
(3)若將正整數依次填入k列的長方形數表中(k≥3),繼續前面的探究,可以發現相應“十字差”為與列數k有關的定值,請用k表示出這個定值,并證明你的結論.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知∠AOB=90°,∠COD=30°.
(1)如圖1,當點O、A、C在同一條直線上時,∠BOD的度數是;
(2)將∠COD從圖1的位置開始,繞點O逆時針方向旋轉n°(即∠AOC=n°),且0<n<180.
①如果∠COD的一邊與∠AOB的一邊垂直,則n= .
②當60<n<90時(如圖2),作射線OM平分∠AOC,射線ON平分∠BOD,試求∠MON的度數 .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在矩形ABCD中,E為CD的中點,H為BE上的一點,=3,連接CH并延長交AB于點G,連接GE并延長交AD的延長線于點F.
(1)求證:;
(2)若∠CGF=90°,求的值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com