【題目】軸運動,速度為每秒1個單位長度,以P為直角頂點在第一象限內作等腰Rt△APB.設P點的運動時間為t秒.
(1)若AB∥x軸,求t的值;
(2)當t=3時,坐標平面內有一點M,使得以M、P、B為頂點的三角形和△ABP全等,請直接寫出點M的坐標.
【答案】
(1)解:過點B作BC⊥x軸于點C,如圖所示.
∵AO⊥x軸,BC⊥x軸,且AB∥x軸,
∴四邊形ABCO為長方形,
∴AO=BC=4.
∵△APB為等腰直角三角形,
∴AP=BP,∠PAB=∠PBA=45°,
∴∠OAP=90°﹣∠PAB=45°,
∴△AOP為等腰直角三角形,
∴OA=OP=4.
∴t=4÷1=4(秒),
故t的值為4
(2)解:當t=3時,M、P、B為頂點的三角形和△ABP全等,可得:
點M的坐標為(4,7),(6,﹣4),(10,﹣1),(0,4)
【解析】(1)由AB∥x軸,可找出四邊形ABCO為長方形,再根據△APB為等腰三角形可得知∠OAP=45°,從而得出△AOP為等腰直角三角形,由此得出結論;(2)由全等三角形的性質和等腰三角形的性質可得出結論,注意分類討論.
【考點精析】解答此題的關鍵在于理解等腰直角三角形的相關知識,掌握等腰直角三角形是兩條直角邊相等的直角三角形;等腰直角三角形的兩個底角相等且等于45°.
科目:初中數學 來源: 題型:
【題目】如圖,AB∥CD,CE平分∠ACD交AB于E點.
(1)求證:△ACE是等腰三角形;
(2)若AC=13cm,CE=24cm,求△ACE的面積.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某校為開展好大課間活動,欲購買單價為20元的排球和單價為80元的籃球共100個.
(1)設購買排球數為x(個),購買兩種球的總費用為y(元),請你寫出y與x的函數關系式(不要求寫出自變量的取值范圍);
(2)如果購買兩種球的總費用不超過6620元,并且籃球數不少于排球數的3倍,那么有哪幾種購買方案?
(3)從節約開支的角度來看,你認為采用哪種方案更合算?
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com