【題目】如圖,在和
中,
、
、
、
在同一直線上,下面有四個條件:
①;②
;③
;④
.請你從中選三個作為題設,余下的一個作為結論,寫出一個真命題,并加以證明.
解:我寫的真命題是:
已知:____________________________________________;
求證:___________.(注:不能只填序號)
證明如下:
【答案】已知:如圖,在△ABC和△DEF中,B、E、C、F在同一直線上,AB=DE,AC=DF,BE=CF.求證:AB∥DE.證明見解析.或已知:如圖,在△ABC和△DEF中,B、E、C、F在同一直線上,AB=DE,AB∥DE,BE=CF.求證:AC=DF.證明見解析.
【解析】
由BE=CFBC=EF,所以,由①②④,可用SSS△ABC≌△DEF∠ABC=∠DEF AB∥DE;由①③④,可用SAS△ABC≌△DEFAC=DF;由于不存在ASS的證明全等三角形的方法,故由其它三個條件不能得到1或4.
解:將①②④作為題設,③作為結論,可寫出一個正確的命題,如下:
已知:如圖,在△ABC和△DEF中,B、E、C、F在同一直線上,AB=DE,AC=DF,BE=CF.
求證:AB∥DE.
證明:在△ABC和△DEF中,
∵BE=CF,
∴BC=EF.
又∵AB=DE,AC=DF,
∴△ABC≌△DEF(SSS)
∴∠ABC=∠DEF.
∴ AB∥DE.
將①③④作為題設,②作為結論,可寫出一個正確的命題,如下:
已知:如圖,在△ABC和△DEF中,B、E、C、F在同一直線上,AB=DE,AB∥DE,BE=CF.
求證:AC=DF.
證明:∵AB∥DE,∴∠ABC=∠DEF.
在△ABC和△DEF中
∵BE=CF,∴BC=EF.
又∵AB=DE,∠ABC=∠DEF,
∴△ABC≌△DEF(SAS),
∴AC=DF.
科目:初中數學 來源: 題型:
【題目】如圖1所示,在中,
,點
是線段
延長線上一點,且
,點
是線段
上一點,連接
,以
為斜邊作等腰
,連接
,
滿是條件
.
(1)若,
,
,求
的長度;
(2)求證:;
(3)如圖2,點是線段
延長線上一點,其余條件與題干一致,探究
、
、
之間的數量關系,并證明你的結論.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某氣球內充滿一定質量的氣體,當溫度不變時,氣球內氣體的氣壓p(kPa)是氣體體積V(m3)的反比例函數,其圖象如圖所示.
(1)寫出這一函數的表達式.
(2)當氣體體積為1 m3時,氣壓是多少?
(3)當氣球內的氣壓大于140 kPa時,氣球將爆炸,為了安全考慮,氣體的體積應不小于多少?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,反比例函數(x>0)的圖象經過點A(2
,1),直線AB與反比例函數圖象交與另一點B(1,a),射線AC與y軸交于點C,∠BAC=75°,AD⊥y軸,垂足為D.
(1)求反比例函數的解析式;
(2)求tan∠DAC的值及直線AC的解析式.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,等邊△ABC中,AB=6,點D在BC上,BD=4,點E從點C出發,以每秒1個單位長度的速度沿CA方向向點A運動,△CDE關于DE的軸對稱圖形為△FDE.
(1)當t為何值時,點F在線段AC上.
(2)當0<t<4時,求∠AEF與∠BDF的數量關系;
(3)當點B、E、F三點共線時,求證:點F為線段BE的中點.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某超市計劃購進甲、乙兩種商品,兩種商品的進價、售價如下表:
商品 | 甲 | 乙 |
進價(元/件) | ||
售價(元/件) | 200 | 100 |
若用360元購進甲種商品的件數與用180元購進乙種商品的件數相同.
(1)求甲、乙兩種商品的進價是多少元?
(2)若超市銷售甲、乙兩種商品共50件,其中銷售甲種商品為件(
),設銷售完50件甲、乙兩種商品的總利潤為
元,求
與
之間的函數關系式,并求出
的最小值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖 AB=AC,CD⊥AB于D,BE⊥AC于E,BE與CD相交于點O.
(1)求證AD=AE;
(2)連接OA,BC,試判斷直線OA,BC的關系并說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知,△ABC中,AB=AC,∠BAC=90°,E為邊AC任意一點,連接BE.
(1)如圖1,若∠ABE=15°,O為BE中點,連接AO,且AO=1,求BC的長;
(2)如圖2,F也為AC上一點,且滿足AE=CF,過A作AD⊥BE交BE于點H,交BC于點D,連接DF交BE于點G,連接AG.若AG平分∠CAD,求證:AH=AC.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°.
(1)利用直尺和圓規按下列要求作圖,并在圖中標明相應的字母.(保留作圖痕跡,不寫作法)
①作AC的垂直平分線,交AB于點O,交AC于點D;
②以O為圓心,OA為半徑作圓,交OD的延長線于點E.
(2)在(1)所作的圖形中,解答下列問題.
①點B與⊙O的位置關系是__;(直接寫出答案)
②若DE=2,AC=8,求⊙O的半徑.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com