【題目】如圖1,拋物線y1=ax2﹣x+c與x軸交于點A和點B(1,0),與y軸交于點C(0,
),拋物線y1的頂點為G,GM⊥x軸于點M.將拋物線y1平移后得到頂點為B且對稱軸為直線l的拋物線y2.
(1)求拋物線y2的解析式;
(2)如圖2,在直線l上是否存在點T,使△TAC是等腰三角形?若存在,請求出所有點T的坐標;若不存在,請說明理由;
(3)點P為拋物線y1上一動點,過點P作y軸的平行線交拋物線y2于點Q,點Q關于直線l的對稱點為R,若以P,Q,R為頂點的三角形與△AMG全等,求直線PR的解析式.
【答案】(1)見解析;(2)見解析;(3)見解析.
【解析】
(1)應用待定系數法求解析式;
(2)設出點T坐標,表示△TAC三邊,進行分類討論;
(3)設出點P坐標,表示Q、R坐標及PQ、QR,根據以P,Q,R為頂點的三角形與△AMG全等,分類討論對應邊相等的可能性即可.
(1)由已知,c=,
將B(1,0)代入,得:a﹣=0,
解得a=﹣,
拋物線解析式為y1=x2-
x+
,
∵拋物線y1平移后得到y2,且頂點為B(1,0),
∴y2=﹣(x﹣1)2,
即y2=-x2+
x-
;
(2)存在,
如圖1:
拋物線y2的對稱軸l為x=1,設T(1,t),
已知A(﹣3,0),C(0,),
過點T作TE⊥y軸于E,則
TC2=TE2+CE2=12+()2=t2﹣
t+
,
TA2=TB2+AB2=(1+3)2+t2=t2+16,
AC2=,
當TC=AC時,t2﹣t+
=
,
解得:t1=,t2=
;
當TA=AC時,t2+16=,無解;
當TA=TC時,t2﹣t+
=t2+16,
解得t3=﹣;
當點T坐標分別為(1,),(1,
),(1,﹣
)時,△TAC為等腰三角形;
(3)如圖2:
設P(m,),則Q(m,
),
∵Q、R關于x=1對稱
∴R(2﹣m,),
①當點P在直線l左側時,
PQ=1﹣m,QR=2﹣2m,
∵△PQR與△AMG全等,
∴當PQ=GM且QR=AM時,m=0,
∴P(0,),即點P、C重合,
∴R(2,﹣),
由此求直線PR解析式為y=﹣x+
,
當PQ=AM且QR=GM時,無解;
②當點P在直線l右側時,
同理:PQ=m﹣1,QR=2m﹣2,
則P(2,﹣),R(0,﹣
),
PQ解析式為:y=﹣;
∴PR解析式為:y=﹣x+
或y=﹣
.
科目:初中數學 來源: 題型:
【題目】如圖,邊長為8的正方形OABC的兩邊在坐標軸上,以點C為頂點的拋物線經過點A,
(1)請求出拋物線的解析式;
(2)連接OB,與拋物線交于點M,請求出M點坐標;
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】兩輛汽車沿同一條路趕赴距離的某景區.甲勻速行駛一段時間出現故障,停車檢修后繼續行駛.圖中折線
、線段
分別表示甲、乙兩車所行的路程
與甲車出發時間
之間的關系,則下列結論中正確的個數是( )①甲車比乙車早出發2小時;②圖中的
;③兩車相遇時距離目的地
;④乙車的平均速度是
;⑤甲車檢修后的平均速度是
.
A.1B.2C.3D.4
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】 某校行“漢字聽寫”比賽,每位學生聽寫漢字39個,比賽結束后隨機抽查部分學生聽寫結果.以下是根據抽查繪制的統計圖的一部分.
組別 | 正確字數x | 人數 |
A | 0≤x<8 | 10 |
B | 8≤x<16 | 15 |
C | 16≤x<24 | 25 |
D | 24≤x<32 | m |
E | 32≤x<40 | n |
根據以上信息解決下列問題:
(1)這次抽樣調查的樣本容量是______,并補全條形統計圖;
(2)扇形統計圖中“C組”所對應的圓心角的度數是______;
(3)若該校共有900名學生,如果聽寫正確的個數少于24個定為不合格,請你估計這所學校本次比賽聽寫不合格的學生人數.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】為進一步提高全民“節約用水”意識,某學校組織學生進行家庭月用水量情況調查活動,小瑩隨機抽查了所住小區n戶家庭的月用水量,繪制了下面不完整的統計圖.
(1)求n并補全條形統計圖;
(2)求這n戶家庭的月平均用水量;并估計小瑩所住小區420戶家庭中月用水量低于月平均用水量的家庭戶數;
(3)從月用水量為5m3和和9m3的家庭中任選兩戶進行用水情況問卷調查,求選出的兩戶中月用水量為5m3和9m3恰好各有一戶家庭的概率.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,已知點A(-,0),B(0,3),C(0,-1)三點.
(1)求線段BC的長度;
(2)若點D在直線AC上,且DB=DC,求點D的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知一次函數y=x-3與反比例函數y=
的圖象相交于點A(4,n),與x軸相交于點B.
(1)填空:n的值為 ,k的值為 ;
(2)以AB為邊作菱形ABCD,使點C在x軸正半軸上,點D在第一象限,求點D的坐標;
(3)觀察反比函數y=的圖象,當y≥-2時,請直接寫出自變量x的取值范圍.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC中,∠A=α,∠ABC的平分線與∠ACD的平分線交于點A1,得∠A1,∠A1BC的平分線與∠A1CD的平分線交于點A2,得∠A2,…,∠A2013BC的平分線與∠A2013CD的平分線交于點A2014,得∠A2014CD,則∠A2014=_____.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC 中,AB=AC,∠BAC=120°,AC 的垂直平分線交 BC 于 F,交 AC 于 E,交 BA 的延長線于 G,若 EG=3,則 BF 的長是______.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com