【題目】某縣教育局為了豐富初中學生的大課間活動,要求各學校開展形式多樣的陽光體育活動.某中學就“學生體育活動興趣愛好”的問題,隨機調查了本校某班的學生,并根據調查結果繪制成如下的不完整的扇形統計圖和條形統計圖:
(1)在這次調查中,喜歡籃球項目的同學有人,在扇形統計圖中,“乒乓球”的百分比為%,如果學校有800名學生,估計全校學生中有人喜歡籃球項目.
(2)請將條形統計圖補充完整.
(3)在被調查的學生中,喜歡籃球的有2名女同學,其余為男同學.現要從中隨機抽取2名同學代表班級參加;@球隊,請直接寫出所抽取的2名同學恰好是1名女同學和1名男同學的概率.
【答案】
(1)5;20;80
(2)如圖,
(3)畫樹狀圖為:
共有20種等可能的結果數,其中所抽取的2名同學恰好是1名女同學和1名男同學的結果數為12,
所以所抽取的2名同學恰好是1名女同學和1名男同學的概率= =
.
【解析】解:(1)調查的總人數為20÷40%=50(人), 所以喜歡籃球項目的同學的人數=50﹣20﹣10﹣15=5(人);
“乒乓球”的百分比= =20%,
因為800× =80,
所以估計全校學生中有80人喜歡籃球項目;
所以答案是5,20,80;
【考點精析】通過靈活運用扇形統計圖和條形統計圖,掌握能清楚地表示出各部分在總體中所占的百分比.但是不能清楚地表示出每個項目的具體數目以及事物的變化情況;能清楚地表示出每個項目的具體數目,但是不能清楚地表示出各個部分在總體中所占的百分比以及事物的變化情況即可以解答此題.
科目:初中數學 來源: 題型:
【題目】我市為了進一步落實國務院“家電下鄉”政策,家電下鄉的產品為彩電、冰箱、洗衣機和手機四種產品,我市一家家電商場,今年一季度對以上四種產品的銷售情況進行了統計,繪制了如下的統計圖,請你根據圖中信息解答下列問題:
(1)該商場一季度四種產品共銷售臺;
(2)該商場一季度洗衣機銷售的數量占四種產品銷售總量的%;
(3)補全條形統計圖和扇形統計圖.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】《九章算術》是中國古代數學專著,在數學上有其獨到的成就,不僅最早提到了分數問題,也首先記錄了“盈不足”等問題.如有一道闡述“盈不足”的問題,原文如下:今有共買雞,人出九,盈十一;人出六,不足十六.問人數、雞價各幾何?譯文為:現有若干人合伙出錢買雞,如果每人出9文錢,就會多11文錢;如果每人出6文錢,又會缺16文錢.問買雞的人數、雞的價格各是多少?請解答上述問題.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知,在三角形ABC中,點D在BC上,DE⊥AB于E,點F在AB上,在CF的延長線上取一點G,連接AG.
(1)如圖1,若∠GAB=∠B,∠GAC+∠EDB=180°,求證:AB⊥AC.
(2)如圖2.在(1)的條件下,∠GAC的平分線交CG于點M,∠ACB的平分線交AB于點N,當∠AMC-∠ANC=35°時,求∠AGC的度數.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知一個角的兩邊與另一個角的兩邊分別平行,請結合圖,探索這兩個角之間的關系,并說明理由.
(1)如圖①,AB∥CD,BE∥DF,∠1與∠2的關系是 ;
證明:
(2)如圖②,AB∥CD,BE∥DF,∠1與∠2的關系是 ;
證明:
(3)經過上述證明,我們可得出結論,如果一個角的兩邊與另一個角的兩邊分別平行,那么這兩個角 ;
(4)若這兩個角的兩邊分別平行,且一個角比另一個角的3倍少60°,則這兩個角分別是多少度?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】對于實數a,我們規定:用符號[]表示不大于
的最大整數,稱[
]為a的根整數,例如:[
]=3,[
]=3.
(1)仿照以上方法計算:[] = ;[
] = .
(2)若[]=1,寫出滿足題意的x的整數值 .
如果我們對a連續求根整數,直到結果為1為止.例如:對10連續求根整數2次 []=3→[
]=1,這時候結果為1.
(3)對100連續求根整數, 次之后結果為1.
(4)只需進行3次連續求根整數運算后結果為1的所有正整數中,最大的是 .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,拋物線y=﹣ x2+bx+c與x軸交于A、B兩點,與y軸交于點C,拋物線的對稱軸交x軸于點D,已知A(﹣1,0),C(0,2).
(1)求拋物線的解析式
(2)在拋物線的對稱軸上是否存在點P,使△PCD是以CD為腰的等腰三角形?如果存在,請直接寫出P點的坐標;如果不存在,請說明理由.
(3)點E是線段BC上的一個動點,過點E作x軸的垂線與拋物線相交于點F,當點E運動到什么位置時,△CBF的面積最大?請求出△CBF的最大面積及此時E點的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖是放在水平地面上的一把椅子的側面圖,椅子高為AC,椅面寬為BE,椅腳高為ED,且AC⊥BE,AC⊥CD,AC∥ED.從點A測得點D、E的俯角分別為64°和53°.已知ED=35cm,求椅子高AC約為多少?
(參考數據:tan53°≈ ,sin53°≈
,tan64°≈2,sin64°≈
)
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com