精英家教網 > 初中數學 > 題目詳情

【題目】如圖,二次函數y=x2+bx+c的圖像與x軸交于A,B兩點,B點坐標為(4,0),與y軸交于點C(0,4).D為拋物線上一點

(1)求拋物線的解析式及A點坐標;

(2)若△BCD是以BC為直角邊的直角三角形時,求點D的坐標;

(3)△BCD是銳角三角形,請直接寫出點D的橫坐標m的取值范圍 .

【答案】(1)y=x2-5x+4, A(1,0);(2)(6,10)(2,-2)(3)3+m 6 3-m 2

【解析】

1)利用待定系數法求拋物線的解析式,再令y=0,求A的坐標;

2)設D點橫坐標為a,代入函數解析式可得縱坐標,分別討論∠BCD=90°和∠CBD=90°的情況,作出圖形進行求解;

3)當BC為斜邊構成RtBCD時,以BC中點O'為圓心,以BC為直徑畫圓,與拋物線交于DD',此時△BCD和△BCD'就是以BC為斜邊的直角三角形,利用兩點間距離公式列出方程求解,然后結合(2)找到m的取值范圍.

1)將B4,0),C0,4)代入y=x2+bx+c得,

,解得,

所以拋物線的解析式為,

y=0,得,解得,

A點的坐標為(1,0

2)設D點橫坐標為,則縱坐標為,

①當∠BCD=90°時,如下圖所示,連接BC,過C點作CDBC與拋物線交于點D,過DDEy軸與點E,

B、C坐標可知,OB=OC=4,

∴△OBC為等腰直角三角形,

∴∠OCB=OBC=45°,

又∵∠BCD=90°,

∴∠ECD+OCB=90°

∴∠ECD=45°,

∴△CDE為等腰直角三角形,

DE=CE=a

OE=OC+CE=a+4

D、E縱坐標相等,可得,

解得,

時,D點坐標為(0,4),與C重合,不符合題意,舍去.

時,D點坐標為(6,10);

②當∠CBD=90°時,如下圖所示,連接BC,過B點作BDBC與拋物線交于點D,過BFGx軸,再過CCFFGF,過DDG⊥/span>FGG

∵∠COB=OBF=BFC=90°,

∴四邊形OBFC為矩形,

又∵OC=OB

∴四邊形OBFC為正方形,

∴∠CBF=45°

∵∠CBD=90°,

∴∠CBF+DBG=90°,

∴∠DBG=45°,

∴△DBG為等腰直角三角形,

DG=BG

D點橫坐標為a,

DG=4-a

BG=

解得,,

時,D點坐標為(4,0),與B重合,不符合題意,舍去.

時,D點坐標為(2,-2);

綜上所述,D點坐標為(6,10)(2,-2).

3)當BC為斜邊構成RtBCD時,如下圖所示,以BC中點O'為圓心,以BC為直徑畫圓,與拋物線交于DD',

BC為圓O'的直徑,

∴∠BDC=BD'C=90°,

DO'的距離為圓O'的半徑,

D點橫坐標為m,縱坐標為,O'點坐標為(2,2),

化簡得:

由圖像易得m=04為方程的解,則方程左邊必有因式

∴采用因式分解法進行降次解方程

,

解得,,

時,D點坐標為(0,4),與C點重合,舍去;

時,D點坐標為(4,0),與B點重合,舍去;

時,D點橫坐標;

時,D點橫坐標為;

結合(2)中△BCD形成直角三角形的情況,

可得△BCD為銳角三角形時,D點橫坐標m的取值范圍為3+m 6 3-m 2.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖,已知拋物線的頂點為P1,4),與y軸交于點C03),與x軸交于點A,B

1)求此拋物線的解析式.

2)設Q是直線BC上方該拋物線上除點P外的一點,且△BCQ與△BCP的面積相等,求點Q的坐標.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在平面直角坐標系中,一次函數的圖象與軸、軸分別交于兩點,以為邊長在第一象限內作正方形,若反比例函數)的圖象經過頂點.

1)試確定的值;

2)若正方形向左平移個單位后,頂點恰好落在反比例函數的圖象上,試確定的值.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某水果批發商銷售每箱進價為40元的蘋果,物價部門規定每箱售價不得高于55元,市場調查發現,若每箱以50元的價格銷售,平均每天銷售90箱,價格每提高1元,平均每天少銷售3箱.

1)求平均每天銷售量箱與銷售價/箱之間的函數關系式.

2)求該批發商平均每天的銷售利潤w(元)與銷售價(元/箱)之間的函數關系式.

3)當每箱蘋果的銷售價為多少元時,可以獲得最大利潤?最大利潤是多少?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,拋物線y1的頂點在y軸上,y2y1平移得到,它們與x軸的交點為AB、C,2BC=3AB=4OD=6,若過原點的直線被拋物線y1、y2所截得的線段長相等,則這條直線的解析式為____________

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,BAD是由BEC在平面內繞點B旋轉60°而得,且ABBC,BE=CE,連接DE.

(1)求證:BDE≌△BCE;

(2)試判斷四邊形ABED的形狀,并說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】四邊形ABCD是正方形,△ADF旋轉一定角度后得到△ABE,如圖所示,如果AF5,AB9.

(1)求:DE的長度;

(2)求證:BE⊥DF

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】2019年中國北京世界園藝博覽會(以下簡稱世園會”)429日至107日在北京延慶區舉行.世園會為滿足大家的游覽需求,傾情打造了4條各具特色的趣玩路線,分別是:解密世園會、愛我家,愛園藝、園藝小清新之旅快速車覽之旅.李欣和張帆都計劃暑假去世園會,他們各自在這4條線路中任意選擇一條線路游覽,每條線路被選擇的可能性相同.

(1)李欣選擇線路園藝小清新之旅的概率是多少?

(2)用畫樹狀圖或列表的方法,求李欣和張帆恰好選擇同一線路游覽的概率.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,二次函數的圖象的對稱軸是直線,則下列理論:①, ,③,④,⑤當時, 的增大而減小,其中正確的是( ).

A. ①②③ B. ②③④ C. ③④⑤ D. ①③④

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视