【題目】將直線y=2x-3向右平移2個單位。再向上平移2個單位后,得到直線y=kx+b.則下列關于直線y=kx+b的說法正確的是( )
A. 與y軸交于(0,-5)B. 與x軸交于(2,0)
C. y隨x的增大而減小D. 經過第一、二、四象限
科目:初中數學 來源: 題型:
【題目】小明家的洗手盆上裝有一種抬啟式水龍頭(如圖1),完全開啟后,水流路線呈拋物線,把手端點A,出水口B和落水點C恰好在同一直線上,點A至出水管BD的距離為12cm,洗手盆及水龍頭的相關數據如圖2所示,現用高10.2cm的圓柱型水杯去接水,若水流所在拋物線經過點D和杯子上底面中心E,則點E到洗手盆內側的距離EH為_________cm.
(第16題圖)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在⊙O中,AB為直徑,OC⊥AB,弦CD與OB交于點F,在AB的延長線上有點E,且EF=ED.
(1)求證:DE是⊙O的切線;
(2)若tanA=,探究線段AB和BE之間的數量關系,并證明;
(3)在(2)的條件下,若OF=1,求圓O的半徑.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】撫順某中學為了解八年級學生的體能狀況,從八年級學生中隨機抽取部分學生進行體能測試,測試結果分為A,B,C,D四個等級.請根據兩幅統計圖中的信息回答下列問題:
(1)本次抽樣調查共抽取了多少名學生?
(2)求測試結果為C等級的學生數,并補全條形圖;
(3)若該中學八年級共有700名學生,請你估計該中學八年級學生中體能測試結果為D等級的學生有多少名?
(4)若從體能為A等級的2名男生2名女生中隨機的抽取2名學生,做為該校培養運動員的重點對象,請用列表法或畫樹狀圖的方法求所抽取的兩人恰好都是男生的概率.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知代數式A=x2+3xy+x-,B=2x2-xy+4y-1
(1)當x=y=-2時,求2A-B的值;
(2)若2A-B的值與y的取值無關,求x的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,以AC為直徑作⊙O,交AB于D,過點O作OE∥AB,交BC于E.
(1)求證:ED為⊙O的切線;
(2)如果⊙O的半徑為,ED=2,延長EO交⊙O于F,連接DF、AF,求△ADF的面積.
【答案】(1)證明見解析;(2)
【解析】試題分析:(1)首先連接OD,由OE∥AB,根據平行線與等腰三角形的性質,易證得≌
即可得
,則可證得
為
的切線;
(2)連接CD,根據直徑所對的圓周角是直角,即可得 利用勾股定理即可求得
的長,又由OE∥AB,證得
根據相似三角形的對應邊成比例,即可求得
的長,然后利用三角函數的知識,求得
與
的長,然后利用S△ADF=S梯形ABEF-S梯形DBEF求得答案.
試題解析:(1)證明:連接OD,
∵OE∥AB,
∴∠COE=∠CAD,∠EOD=∠ODA,
∵OA=OD,
∴∠OAD=∠ODA,
∴∠COE=∠DOE,
在△COE和△DOE中,
∴△COE≌△DOE(SAS),
∴ED⊥OD,
∴ED是的切線;
(2)連接CD,交OE于M,
在Rt△ODE中,
∵OD=32,DE=2,
∵OE∥AB,
∴△COE∽△CAB,
∴AB=5,
∵AC是直徑,
∵EF∥AB,
∴S△ADF=S梯形ABEFS梯形DBEF
∴△ADF的面積為
【題型】解答題
【結束】
25
【題目】【題目】已知,拋物線y=ax2+ax+b(a≠0)與直線y=2x+m有一個公共點M(1,0),且a<b.
(1)求b與a的關系式和拋物線的頂點D坐標(用a的代數式表示);
(2)直線與拋物線的另外一個交點記為N,求△DMN的面積與a的關系式;
(3)a=﹣1時,直線y=﹣2x與拋物線在第二象限交于點G,點G、H關于原點對稱,現將線段GH沿y軸向上平移t個單位(t>0),若線段GH與拋物線有兩個不同的公共點,試求t的取值范圍.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖1,邊長為a的正方形發生形變后成為邊長為a的菱形,如果這個菱形的一組對邊之間的距離為h,我們把的值叫做這個菱形的“形變度”.例如,當形變后的菱形是如圖2形狀(被對角線BD分成2個等邊三角形),則這個菱形的“形變度”為2:
.如圖3,正方形由16個邊長為1的小正方形組成,形變后成為菱形,△AEF(A、E、F是格點)同時形變為△A′E′F′,若這個菱形的“形變度”k=
,則S△A′E′F′=__
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在圖1至圖3中,直線MN與線段AB相交于點O,∠1=∠2=45°.
(1)如圖1,若AO=OB,請寫出AO與BD的數量關系和位置關系;
(2)將圖1中的MN繞點O順時針旋轉得到圖2,其中AO=OB.求證:AC=BD,AC⊥BD;
(3)將圖2中的OB拉長為AO的k倍得到圖3,求的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】有依次3個數:2、9、7.對任意相鄰的兩個數,都用右邊的數減去左邊的數,所得之差寫在這兩個數之間,可產生一個新數串:2、7、9、-2、7,這稱為第1次操作,做第2次同樣的操作后也可以產生一個新數串:2、5、7、2、9、-11、-2、9、7,繼續依次操作下去,問從數串2、9、7開始操作第20次后所產生的那個數串的所有數之和是___________.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com