【題目】下列說法:①必是負數;②絕對值最小的數是0;③在數軸上,原點兩旁的兩個點表示的數必互為相反數;④在數軸上,左邊的點比右邊的點所表示的數大,其中正確的有( )
A.0個B.1個C.2個D.3個
科目:初中數學 來源: 題型:
【題目】如圖,有一直角三角形紙片ABC,∠C=90°,∠B=30°,將該直角三角形紙片沿DE折疊,使點B與點A重合,DE=1,則BC的長度為( )
A. 2 B. +2 C. 3 D. 2
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】學生對待學習的態度一直是教育工作者關注的問題之一.為此,某區教委對該區部分學校的八年級學生對待學習的態度進行了一次抽樣調查(把學習態度分為三個層級,A級:對學習很感興趣;B級:對學習較感興趣;C級:對學習不感興趣),并將調查結果繪制成圖①和圖②的統計圖(不完整).請根據圖中提供的信息,解答下列問題:
(1)此次抽樣調查中,共調查了 名學生;
(2)將圖①補充完整;
(3)求出圖②中C級所占的圓心角的度數.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,甲、乙兩座建筑物的水平距離BC為78m,從甲的頂部A處測得乙的頂部D處的俯角為48°,測得底部C處的俯角為58°,求乙建筑物的高度CD.(結果取整數,參考數據:tan58°≈1.60,tan48°≈1.11).
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】(感知)如圖①在等邊△ABC和等邊△ADE中,連接BD,CE,易證:△ABD≌△ACE;
(探究)如圖②△ABC與△ADE中,∠BAC=∠DAE,∠ABC=∠ADE,求證:△ABD∽△ACE;
(應用)如圖③,點A的坐標為(0,6),AB=BO,∠ABO=120°,點C在x軸上運動,在坐標平面內作點D,使AD=CD,∠ADC=120°,連結OD,則OD的最小值為 .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】對于平面直角坐標系xOy中的點P和⊙C,給出如下定義:如果⊙C的半徑為r,⊙C外一點P到⊙C的切線長小于或等于2r,那么點P叫做⊙C的“離心點”.
(1)當⊙O的半徑為1時,
①在點P1(,
),P2(0,-2),P3(
,0)中,⊙O的“離心點”是 ;
②點P(m,n)在直線上,且點P是⊙O的“離心點”,求點P橫坐標m的取值范圍;
(2)⊙C的圓心C在y軸上,半徑為2,直線與x軸、y軸分別交于點A,B. 如果線段AB上的所有點都是⊙C的“離心點”,請直接寫出圓心C縱坐標的取值范圍.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,梯形ABCD中,AB∥CD,兩條對角線交于點E.已知△ABE的面積是a,△CDE的面積是b,則梯形ABCD的面積是( 。
A. a2+b2 B. (a+b) C.
D. (a+b)2
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com