精英家教網 > 初中數學 > 題目詳情

【題目】如圖,在平面直角坐標系中,點A在第二象限內,點B在x軸上,∠AOB=30°,AB=BO,反比例函數y= (x<0)的圖象經過點A,若SABO= ,則k的值為

【答案】-3
【解析】解:過點A作AD⊥x軸于點D,如圖所示.

∵∠AOB=30°,AD⊥OD,
=tan∠AOB= ,
∴設點A的坐標為(﹣3a, a).
∵SABO= OBAD= ,
∴OB=
在Rt△ADB中,∠ADB=90°,AD= a,AB=OB= ,
∴BD2=AB2﹣AD2= ﹣3a2 , BD=
∵OD=OB+BD=3a,即3a= +
解得:a=1或a=﹣1(舍去).
∴點A的坐標為(﹣3, ),
∴k=﹣3× =﹣3
所以答案是:﹣3
【考點精析】根據題目的已知條件,利用比例系數k的幾何意義的相關知識可以得到問題的答案,需要掌握幾何意義:表示反比例函數圖像上的點向兩坐標軸所作的垂線段與兩坐標軸圍成的矩形的面積.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖,△ABC中,P為AB上的一點,在下列四個條件中:①∠ACP=∠B;②∠APC=∠ACB;③AC2=APAB;④ABCP=APCB,能滿足△APC和△ACB相似的條件是( 。

A.①②④
B.①③④
C.②③④
D.①②③

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知拋物線y=﹣x2﹣2x+3與x軸交于A、B兩點,將這條拋物線的頂點記為C,連接AC、BC,則tan∠CAB的值為( )
A.
B.
C.
D.2

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,一次函數y=x+m的圖象與反比例函數y= 的圖象交于A,B兩點,且與x軸交于點C,點A的坐標為(2,1).

(1)求m及k的值;
(2)求點C的坐標,并結合圖象寫出不等式組0<x+m≤ 的解集.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,點O在△ABC內,且到三邊的距離相等.若∠BOC=120°,則tanA的值為( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在Rt△ABC中,∠ABC=90°,AB=CB,以AB為直徑的⊙O交AC于點D,點E是AB邊上一點(點E不與點A、B重合),DE的延長線交⊙O于點G,DF⊥DG,且交BC于點F.

(1)求證:AE=BF;
(2)連接GB,EF,求證:GB∥EF;
(3)若AE=1,EB=2,求DG的長.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】計算:4sin60°+|3﹣ |﹣( 1+(π﹣2016)0

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖是一根可伸縮的魚竿,魚竿是用10節大小不同的空心套管連接而成.閑置時魚竿可收縮,完全收縮后,魚竿長度即為第1節套管的長度(如圖1所示):使用時,可將魚竿的每一節套管都完全拉伸(如圖2所示).圖3是這跟魚竿所有套管都處于完全拉伸狀態下的平面示意圖.已知第1節套管長50cm,第2節套管長46cm,以此類推,每一節套管均比前一節套管少4cm.完全拉伸時,為了使相鄰兩節套管連接并固定,每相鄰兩節套管間均有相同長度的重疊,設其長度為xcm.

(1)請直接寫出第5節套管的長度;
(2)當這根魚竿完全拉伸時,其長度為311cm,求x的值.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】在平面直角坐標系中,平行四邊形ABOC如圖放置,點A、C的坐標分別是(0,4)、(﹣1,0),將此平行四邊形繞點O順時針旋轉90°,得到平行四邊形A′B′OC′.

(1)若拋物線經過點C、A、A′,求此拋物線的解析式;
(2)點M時第一象限內拋物線上的一動點,問:當點M在何處時,△AMA′的面積最大?最大面積是多少?并求出此時M的坐標;
(3)若P為拋物線上一動點,N為x軸上的一動點,點Q坐標為(1,0),當P、N、B、Q構成平行四邊形時,求點P的坐標,當這個平行四邊形為矩形時,求點N的坐標.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视