【題目】綜合與實踐
在Rt△ABC中,∠ACB=90°,點D為斜邊AB上的動點(不與點A,B重合).
(1)操作發現:如圖①,當AC=BC=8時,把線段CD繞點C逆時針旋轉90°得到線段CE,連接DE,BE.
①∠CBE的度數為 ;
②當BE= 時,四邊形CDBE為正方形;
(2)探究證明:如圖②,當BC=2AC時,把線段CD繞點C逆時針旋轉90°后并延長為原來的兩倍,記為線段CE,連接DE,BE.
①在點D的運動過程中,請判斷∠CBE與∠A的大小關系,并證明;
②當CD⊥AB時,求證:四邊形CDBE為矩形.
【答案】(1)①45°;②;(2)①∠CBE=∠A,證明詳見解析;②詳見解析
【解析】
(1)①根據等腰直角三角形的性質得到,證明
,根據全等三角形的性質證明結論;
②根據勾股求出AB,再根據正方形的性質計算即可;
(2)①證明,根據相似三角形的性質證明結論;
②根據全等三角形的性質、矩形的判定定理證明.
解:(1)①∵,
∴,
,
∴∠ACB=∠DCE,
∴,
即,
在和
中,
,
∴(SAS),
;
故答案為:45°;
②,
,
當四邊形CDBE是正方形時,CD⊥AB,BE=BD=AD,
;
故答案為:.
(2)①∠CBE=∠A.
理由如下:
∵BC=2AC,CE=2CD,
∴,
∵∠ACB=∠DCE=90°,
∴∠ACD+∠DCB=∠DCB+∠BCE,
∴∠ACD=∠BCE,
∴△ACD∽△BCE,
∴∠CBE=∠A;
②證明:∵∠CBE=∠A,∠DBC+∠A=90°,
∴∠DBE=∠DBC+∠CBE=∠DBC+∠A=90°,
∵
∴∠CDB=90°,
又∵∠DCE=90°,
∴四邊形CDBE是矩形.
科目:初中數學 來源: 題型:
【題目】電子跳蚤游戲盤是如圖所示的,
.如果跳蚤開始時在
邊的
處,
.跳蚤第一步從
跳到
邊的
(第1次落點)處,且
;第二步從
跳到
邊的
(第2次落點)處,且
;第三步從
跳到
邊的
(第3次落點)處,且
;……;跳蚤按上述規則一直跳下去,第
次落點為
(
為正整數),則點
與
之間的距離為( )
A.1B.2C.3D.4
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】小明在學了尺規作圖后,通過“三弧法”作了一個△ACD,其作法步驟是:①作線段AB,分別以A,B為圓心,AB長為半徑畫弧,兩弧的交點為C;②以B為圓心,AB長為半徑畫弧交AB的延長線于點D;③連結AC,BC,CD.下列說法不正確的是( 。
A.∠A=60°B.△ACD是直角三角形
C.BC=CDD.點B是△ACD的外心
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】甲、乙兩人準備整理一批新到的實驗器材,若甲單獨整理需要40分鐘完工,若甲、乙共同整理20分鐘后,乙需再單獨整理20分鐘才能完工.
⑴問乙單獨整理多少分鐘完工?
⑵若乙因工作需要,他的整理時間不超過30分鐘,則甲至少整理多少分鐘才能完工?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在平面直角坐標系中,點A(,1)在射線OM上,點B(
,2)在射線ON上,以AB為直角邊作Rt△ABA1,以BA1為直角邊作第二個Rt△BA1B1,然后以A1B1為直角邊作第三個Rt△A1B1A2,…,依次規律,得到Rt△B2019A2020B2020,則點B2020的縱坐標為_____.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某校為改善辦學條件,計劃購進A,B兩種規格的書架,經市場調查發現有線下和線上兩種購買方式,具體情況如下表:
(1)如果在線下購買A,B兩種書架20個,共花費5520元,求A,B兩種書架各購買了多少個.
(2)如果在線上購買A,B兩種書架20個,共花費W元,設其中A種書架購買m個,求W關于m的函數關系式.
(3)在(2)的條件下,若購買B種書架的數量不少于A種書架數量的2倍,請求出花費最少的購買方案,并計算按照這種購買方案,線上比線下節約多少錢?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某市教育行政部門為了了解初一學生每學期參加綜合實踐活動的情況,隨機抽樣調查了某校初一學生一個學期參加綜合實踐活動的天數,并用得到的數據繪制了下面兩幅不完整的統計圖(如圖).
請你根據圖中提供的信息,回答下列問題:
(1)求出扇形統計圖中a的值,并求出該校初一學生總數;
(2)分別求出活動時間為5天、7天的學生人數,并補全頻數分布直方圖;
(3)求出扇形統計圖中“活動時間為4天”的扇形所對圓心角的度數;
(4)在這次抽樣調查中,眾數和中位數分別是多少?
(5)如果該市共有初一學生6000人,請你估計“活動時間不少于4天”的大約有多少人?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在矩形ABCD中,AB=2,AD=,E是CD邊上的中點,P是BC邊上的一點,且BP=2CP,連接EP并延長交AB的延長線于點F.
(1)求BF;
(2)判斷EB是否平分∠AEC,并說明理由;
(3)連接AP,不添加輔助線,試證明△AEP≌△FBP,直接寫出一種經過兩次變換的方法使得△AEP與△FBP重合.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】為了做好開學準備,某校共購買了20桶A、B兩種桶裝消毒液,進行校園消殺,以備開學.已知A種消毒液300元/桶,每桶可供2 000米2的面積進行消殺,B種消毒液200元/桶,每桶可供1 000米2的面積進行消殺.
(1)設購買了A種消毒液x桶,購買消毒液的費用為y元,寫出y與x之間的關系式,并指出自變量x的取值范圍;
(2)在現有資金不超過5 300元的情況下,求可消殺的最大面積.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com