【題目】如圖①,已知線段AB和直線l,用直尺和圓規在l上作出所有的點P,使得∠APB=30°,如圖②,小明的作圖方法如下:
第一步:分別以點A,B為圓心,AB長為半徑作弧,兩弧在AB上方交于點O;
第二步:連接OA,OB;
第三步:以O為圓心,OA長為半徑作⊙O,交l于P1,P2;
所以圖中P1,P2即為所求的點.
(1)在圖②中,連接P1A,P1B,證明∠AP1B=30°;
(2)如圖③,用直尺和圓規在矩形ABCD內作出所有的點P,使得∠BPC=45°,(不寫做法,保留作圖痕跡).
(3)已知矩形ABCD,若BC=2.AB=m,P為AD邊上的點,若滿足∠BPC=45°的點P恰有兩個,則m的取值范圍為______________.
【答案】(1)30°;(2)詳見解析;(3)2≤m<
【解析】
(1)由等邊三角形得:∠AOB=60°,則根據圓周角定理可得:∠AP1B=30°;
(2)作等腰直角三角形BEC,BFC,再作△EBC的外接圓,可得圓心角∠BOC=90°,則BC所對的圓周角都是45°;
(3)先確定⊙O,根據同弧所對的圓周角相等,可得AD在四邊形GEFH內部時符合條件,再進行求解即可;
答案:(1)∵OA=OB=AB,
∴△OAB是等邊三角形,
∴∠AOB=60°,
由圖②得:∠AP1B= ∠AOB=30°;
(2)如圖③,①以B、C為圓心,以BC為半徑作圓,交AB、DC于E、F,
②作BC的中垂線,連接EC,交于O,
③以O為圓心,OE為半徑作圓,
則 上所有的點(不包括E、F兩點)即為所求;
(3)如圖:作⊙O
∵BE=BC=2
∴CE=
∴⊙O的半徑為v2,即OE=0G=
,
∵OG⊥EF
∴EH=1,
∴Oн=1,
∴GH= -1,
∴BE≤AB<MB,
∴2≤m<2+-1,即2<m<
+1,
故答案為:2≤m<
科目:初中數學 來源: 題型:
【題目】已知二次函數的y與x的部分對應值如表:
x | 1 | 0 | 2 | 3 | 4 |
y | 5 | 0 | 4 | 3 | 0 |
下列結論:①拋物線的開口向上;②拋物線的對稱軸為直線x=2;③當0<x<4時,y>0;④拋物線與x軸的兩個交點間的距離是4;⑤若A(,2),B(
,3)是拋物線上兩點,則
,其中正確的個數是 ( )
A. 2B. 3C. 4D. 5
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】一個四位數,記千位上和百位上的數字之和為,十位上和個位上的數字之和為
,如果
,那么稱這個四位數為“和平數”.例如:1423,
,
,因為
,所以1423是“和平數”.
(1)直接寫出:最小的“和平數”是_________________,最大的“和平數”是_______________;
(2)求個位上的數字是千位上的數字的兩倍且百位上的數字與十位上的數字之和是12的倍數的所有“和平數”.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,正方形網格中的每個小正方形的邊長都是1,每個小正方形的頂點叫做格點.△ABC的三個頂點A,B,C都在格點上,將△ABC繞點A逆時針方向旋轉90°得到△AB′C′
(1)在正方形網格中,畫出△AB′C′;
(2)分別畫出旋轉過程中,點B點C經過的路徑;
(3)計算線段BC在變換到B′C′的過程中掃過區域的面積.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】拋物線上部分點的橫坐標x縱坐標y的對應值如下表
x | 0 | 1 | 2 | ||||
y | 0 | 0 | 8 |
寫出該拋物線的對稱軸及當
時對應的函數值;
求出拋物線
的解析式,并在平面直角坐標系中畫出該拋物線的圖象;
(3)結合圖象回答:
①不等式的解集是___________________;
②當時,y的取值范圍是__________________.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC中,∠C=90°,BC=3,AC=5,點D為線段AC上一動點,將線段BD繞點D逆時針旋轉90°,點B的對應點為E,連接AE,則AE長的最小值為_____.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】奇思參加我市電視臺組織的“牡丹杯”智力競答節目,答對最后兩道單選題就順利通關,第一道單選題有3個選項,第二道單選題有4個選項,這兩道題奇思都不會,不過奇思還有兩個“求助”可以使用(使用“求助”一次可以讓主持人去掉其中一題的一個錯誤選項).
(1)如果奇思兩次“求助”都在第一道單選題中使用,求他通關的概率;
(2)如果奇思每道單選題各使用一次“求助",請用列表法或畫樹狀圖的方法求他順利通關的概率.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,AB是⊙O的直徑,點C、D在圓上,=
,過點C作CE⊥AD延長線于點E.
(1)求證:CE是⊙O的切線;
(2)若BC=3,AC=4,求CE和AD的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在∠ABC中,∠ABC=90°,tan∠BAC=.
(1)如圖1,分別過A、C兩點作經過點B的直線的垂線,垂足分別為M、N,若點B恰好是線段MN的中點,求tan∠BAM的值;
(2)如圖2,P是邊BC延長線上一點,∠APB=∠BAC,求tan∠PAC的值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com