【題目】已知:如圖AB為⊙O直徑,C是⊙O上一點,D在AB的延長線上,∠DCB=∠A.
(1)求證:CD是⊙O的切線.
(2)若CD與⊙O相切,且∠D=30°,BD=10,求⊙O的半徑.
科目:初中數學 來源: 題型:
【題目】某地2016年為做好“精準扶貧”,投入資金1000萬元用于異地安置,并規劃投入資金逐年增加,2018年在2016年的基礎上增加投入資金1250萬元.
(1)從2016年到2018年,該地投入異地安置資金的年平均增長率為多少?
(2)在2018年異地安置的具體實施中,該地計劃投入資金不低于400萬元用于優先搬遷租房獎勵,規定前1000戶(含第1000戶)每戶每天獎勵8元,1000戶以后每戶每天補助5元,按租房400天計算,試求今年該地至少有多少戶享受到優先搬遷租房獎勵?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】下列兩個三角形不一定相似的是
A.兩條直角邊的比都是的兩個直角三角形
B.腰與底的比都是的兩個等腰三角形
C.有一個內角為的兩個直角三角形
D.有一個內角為的兩個等腰三角形
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】一個盒子中裝有1個紅球、1個白球和2個藍球,這些球除顏色外都相同.
(1)從盒子中任意摸出一個球,恰好是白球的概率是 ;
(2)從中隨機摸出一個球,記下顏色后不放回,再從中隨機摸出一個球,試用樹狀圖或表格列出所以可能的結果,并求兩次摸到的球的顏色能配成紫色的概率.(紅色和藍色在一起可配成紫色)
(3)往盒子里面再放入一個白球,如果從中隨機摸出一個球,記下顏色后放回,再從中隨機摸出一個球,那么兩次摸到的球的顏色能配成紫色的概率是 .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】下面是小飛設計的“過圓外一點作圓的切線”的尺規作圖過程.
已知:P為⊙O外一點.
求作:經過點P的⊙O的切線.
作法:如圖,
①連接OP,作線段OP的垂直平分線交OP于點A;
②以點A為圓心,OA的長為半徑作圓,交⊙O于B,C兩點;
③作直線PB,PC.所以直線PB,PC就是所求作的切線.
根據小飛設計的尺規作圖過程,
(1)使用直尺和圓規補全圖形(保留作圖痕跡);
(2)完成下面的證明(說明:括號里填寫推理的依據).
證明:連接,
,
∵為⊙
的直徑,
∴ ( ).
∴,
.
∴,
為⊙
的切線( ).
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知∠BAC=∠ADE=90°,AD⊥BC,AC=DC.關于優弧CAD,下列結論正確的是( )
A.經過點B和點EB.經過點B,不一定經過點E
C.經過點E,不一定經過點BD.不一定經過點B和點E
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,正方形ABCD的邊長為2,點E是BC的中點,AE與BD交于點P,F是CD上的一點,連接AF分別交BD,DE于點M,N,且AF⊥DE,連接PN,則下列結論中:
①;②
;③tan∠EAF=
;④
正確的是()
A. ①②③B. ①②④C. ①③④D. ②③④
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某商店銷售一種商品,經市場調查發現:該商品的月銷售量y(件)是售價x(元/件)的一次函數,其售價x、月銷售量y、月銷售利潤w(元)的部分對應值如下表:
售價x(元/件) | 40 | 45 |
月銷售量y(件) | 300 | 250 |
月銷售利潤w(元) | 3000 | 3750 |
注:月銷售利潤=月銷售量×(售價-進價)
(1)①求y關于x的函數表達式;
②當該商品的售價是多少元時,月銷售利潤最大?并求出最大利潤;
(2)由于某種原因,該商品進價提高了m元/件(m>0),物價部門規定該商品售價不得超過40元/件,該商店在今后的銷售中,月銷售量與售價仍然滿足(1)中的函數關系.若月銷售最大利潤是2400元,則m的值為 .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在等邊△ABC 中,點 D 是線段 BC 上一點.作射線 AD ,點 B 關于射線 AD 的對稱點為 E .連接 EC 并延長,交射線 AD 于點 F .
(1)補全圖形;(2)求∠AFE 的度數;(3)用等式表示線段 AF 、CF 、 EF 之間的數量關系,并證明.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com