【題目】如圖,矩形ABCD中,過對角線AC的中點O作OE⊥AC交AB于點E,連接CE,若BC=,OE=BE,則CE的長為_____.
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中點A(0,3),,過點A作AB的垂線交x軸于點A1,過A1作AA1的垂線交y軸于點A2,過點A2作A1A2的垂線交x軸于點A3……,按此規律繼續作下去,直至得到點A2018為止,則點A2018坐標為__________.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】為了傳承中華民族優秀傳統文化,我市某中學舉行“漢字聽寫”比賽,賽后整理參賽學生的成績,將學生的成績分為A,B,C,D四個等級,并將結果繪制成圖1的條形統計圖和圖2扇形統計圖,但均不完整.請你根據統計圖解答下列問題:
(1)求參加比賽的學生共有多少名?并補全圖1的條形統計圖.
(2)在圖2扇形統計圖中,m的值為_____,表示“D等級”的扇形的圓心角為_____度;
(3)組委會決定從本次比賽獲得A等級的學生中,選出2名去參加全市中學生“漢字聽寫”大賽.已知A等級學生中男生有1名,請用列表法或畫樹狀圖法求出所選2名學生恰好是一名男生和一名女生的概率.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】請閱讀下列材料,并完成相應的任務.
三等分任意角問題是數學史上一個著名的問題,直到1837年,數學家才證明了“三等分任意角”是不能用尺規完成的.
在探索中,出現了不同的解決問題的方法
方法一:
如圖(1),四邊形ABCD是矩形,F是DA延長線上一點,G是CF上一點,CF與AB交于點E,且∠ACG=∠AGC,∠GAF=∠F,此時∠ECB=∠ACB.
方法二:
數學家帕普斯借助函數給出一種“三等分銳角”的方法(如圖(2)):將給定的銳角∠AOB置于平面直角坐標系中,邊OB在x軸上,邊OA與函數y=的圖象交于點P,以點P為圓心,以2OP長為半徑作弧交圖象于點R.過點P作x軸的平行線,過點R作y軸的平行線,兩直線相交于點M,連接OM得到∠AOB,過點P作PH⊥x軸于點H,過點R作RQ⊥PH于點Q,則∠MOB=
∠AOB.
(1)在“方法一”中,若∠ACF=40°,GF=4,求BC的長.
(2)完成“方法二”的證明.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】數學興趣小組想利用所學的知識了解某廣告牌的高度,已知CD=2m.經測量,得到其它數據如圖所示.其中∠CAH=37°,∠DBH=67°,AB=10m,請你根據以上數據計算GH的長.(參考數據,
,
)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,四邊形ABCD內接于⊙O,AC與BD為對角線,∠BCA=∠BAD,過點A作AE∥BC交CD的延長線于點E.
(1)求證:EC=AC;
(2)若cos∠ADB=,BC=10,求DE的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,一次函數y=x+4的圖象與反比例函數y=(k為常數且k≠0)的圖象交于A(﹣1,a),B兩點,與x軸交于點C.
(1)求此反比例函數的表達式;
(2)若點P在x軸上,且S△ACP=S△BOC,求點P的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在中,
,點
從點
出發以每秒2個單位的速度沿
向終點
運動,過點
作
的垂線交折線
于點
,當點
不和
的頂點重合時,以
為邊作等邊三角形
,使點
和點
在直線
的同側,設點
的運動時間為
(秒).
(1)求等邊三角形的邊長(用含
的代數式表示);
(2)當點落在
的邊
上時,求
的值;
(3)設與
重合部分圖形的面積為
,求
與
的函數關系式;
(4)作直線,設點
關于直線
的對稱點分別為
,直接寫出
時
的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】小飛研究二次函數y=-(x-m)2-m+1(m為常數)性質時如下結論:①這個函數圖象的頂點始終在直線y=-x+1上;②存在一個m的值,使得函數圖象的頂點與軸的兩個交點構成等腰直角三角形;③點A(x1,y1)與點B(x2,y2)在函數圖象上,若x1<x2,x1+x2>2m,則y1<y2;④當-1<x<2時,y隨x的增大而增大,則m的取值范圍為m≥2其中錯誤結論的序號是( )
A. ①B. ②C. ③D. ④
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com