如圖,已知CB是⊙O的弦,CD是⊙O的直徑,點A為CD延長線上一點,BC=AB,∠CAB=30°.
(1)求證:AB是⊙O的切線;(2)若⊙O的半徑為2,求的長.
(1)證明見解析(2)
【解析】解:(1)證明:如圖,連接OB,
∵BC=AB,∠CAB=30°,∴∠ACB=∠CAB=30°。
又∵OC=OB,∴∠CBO=∠ACB=30°。
∴∠AOB=∠CBO+∠ACB=60°。
在△ABO中,∠CAB=30°,∠AOB=60°,∴∠ABO=90°,即AB⊥OB。
∴AB為圓O的切線。
(2)∵OB=2,∠BOD=60°,
∴的長度=
。
(1)連接OB,如圖所示,由BC=AB,利用等邊對等角得到一對角相等,由∠CAB的度數得出
∠ACB的度數,再由OC=OB,利用等邊對等角得到一對角相等,確定出∠CBO,由外角的性質求出∠AOB的度數,在△AOB中,利用三角形的內角和定理求出∠ABO為90°,可得出AB為圓O的切線。
(2)直接應用弧長公式計算即可。
科目:初中數學 來源:2012年初中畢業升學考試(福建龍巖卷)數學(帶解析) 題型:解答題
如圖,已知CB是⊙O的弦,CD是⊙O的直徑,點A為CD延長線上一點,BC=AB,∠CAB=30°.
(1)求證:AB是⊙O的切線;(2)若⊙O的半徑為2,求的長.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com