【題目】如圖,在長方形中,
cm,
cm,點
為
的中點.若點
在線段
上以1 cm/s的速度由點
向點
運動,到點
時不動.同時,點
在線段
上由點
向點
運動.
(1)若點的運動速度與點
的運動速度相等,經過1 s后,
與
是否全等?請說明理由,并判斷此時線段
和
的位置關系;
(2)若點的運動速度與點
的運動速度相等,運動時間為
s,設
的面積為
cm2,請用含
的代數式表示
(3)若點的運動速度與點
的運動速度不相等,當點
的運動速度為多少時,能夠使
與
全等?
【答案】(1)見解析;(2)S=t+6;(3)
cm/s
【解析】
(1)本題很容易證明△AEP≌△BPQ,這樣可得出∠AEP=∠BPQ,因為∠AEP+∠APE=90°,可得出∠BPQ+∠APE=90°,這即可判斷出結論.
(2)可分別用t表示出AP、BQ、BP、CQ的長度,然后用矩形的面積減去△APE、△BPQ及梯形EDCQ的面積即可得出△PEQ的面積為Scm2.
(3)設Q運動的速度為xcm/s,則根據△AEP與△BQP得出AP=BP、AE=BQ或AP=BQ,AE=BP,從而可列出方程組,解出即可得出答案.
(1)∵長方形ABCD,
∴∠A=∠B=90°,
∵點E為AD的中點,AD=6cm,
∴AE=3cm,
又∵P和Q的速度相等可得出AP=BQ=1cm,BP=3,
∴AE=BP,
在△AEP和△BQP中,
,
∴△AEP≌△BPQ,
∴∠AEP=∠BPQ,
又∵∠AEP+∠APE=90°,
故可得出∠BPQ+∠APE=90°,即∠EPQ=90°,
即EP⊥PQ.
(2)連接QE,由題意得:AP=BQ=t,BP=4t,CQ=6t,
SPEQ=SABCDSBPQSEDCQSAPE=AD×ABAE×AP
BP×BQ
(DE+CQ)×CD=24
×3t
t(4t)
×4(3+6t)=
t+6,
(3)設點Q的運動速度為xcm/s,
①經過y秒后,△AEP≌△BQP,則AP=BP,AE=BQ,
∴,
解得:,
即點Q的運動速度為cm/s時能使兩三角形全等.
②經過y秒后,△AEP≌△BPQ,則AP=BQ,AE=BP,
∴y=xy,3=4y,
解得: (舍去).
綜上所述,點Q的運動速度為cm/s時能使兩三角形全等。
科目:初中數學 來源: 題型:
【題目】在Rt△ABC中,∠ACB=90°,以點A為圓心,AC為半徑,作⊙A交AB于點D,交CA的延長線于點E,過點E作AB的平行線EF交⊙A于點F,連接AF、BF,DF.
(1)求證:BF⊥AF;
(2)當∠CAB等于多少度時,四邊形ADEF為菱形?請給予證明.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】(1)設若
求A-2B的值;
(2)某公司有甲、乙兩類經營收入,去年甲類收入是乙類收入的2倍,預計今年甲類年收入減少9%,乙類收入將增加19%。問今年該公司的年總收入比去年增加了嗎?請說明理由。
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】4月23日是“世界讀書日”,學校開展“讓書香溢滿校園”讀書活動,以提升青少年的閱讀興趣,九年級(1)班數學活動小組對本年級600名學生每天閱讀時間進行了統計,根據所得數據繪制了兩幅不完整統計圖(每組包括最小值不包括最大值).九年級(1)班每天閱讀時間在0.5小時以內的學生占全班人數的8%.根據統計圖解答下列問題:
(1)九年級(1)班有 名學生;
(2)補全直方圖;
(3)除九年級(1)班外,九年級其他班級每天閱讀時間在1~1.5小時的學生有165人,請你補全扇形統計圖;
(4)求該年級每天閱讀時間不少于1小時的學生有多少人.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】(1)問題背景:
如圖1,在四邊形ABCD中,AB=AD,∠BAD=120°,∠B=∠ADC=90°,E、F分別是BC,CD上的點,且∠EAF=60°,探究圖中線段BE,EF,FD之間的數量關系.
小王同學探究此問題的方法是延長FD到點G,使DG=BE,連結AG,先證明△ABE≌△ADG,再證明△AEF≌△AGF,可得出結論,他的結論應是 ;
(2)探索延伸:
如圖2,若在四邊形ABCD中,AB=AD,∠B+∠D=180°,E,F分別是BC,CD上的點,且∠EAF=∠BAD,上述結論是否仍然成立,并說明理由;
(3)結論應用:
如圖3,在某次軍事演習中,艦艇甲在指揮中心(O處)北偏西30°的A處,艦艇乙在指揮中心南偏東70°的B處,并且兩艦艇到指揮中心的距離相等.接到行動指令后,艦艇甲向正東方向以60海里/小時的速度前進,艦艇乙沿北偏東50°的方向以80海里/小時的速度前進,1.5小時后,指揮中心觀測到甲、乙兩艦艇分別到達E,F處,且兩艦艇與指揮中心O之間夾角∠EOF=70°,試求此時兩艦艇之間的距離.
(4)能力提高:
如圖4,等腰直角三角形ABC中,∠BAC=90°,AB=AC,點M,N在邊BC上,且∠MAN=45°.若BM=1,CN=3,試求出MN的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】【探究函數y=x+ 的圖象與性質】
(1)函數y=x+ 的自變量x的取值范圍是;
(2)下列四個函數圖象中函數y=x+ 的圖象大致是;
(3)對于函數y=x+ ,求當x>0時,y的取值范圍. 請將下列的求解過程補充完整.
解:∵x>0
∴y=x+ =(
)2+(
)2=(
﹣
)2+
∵( ﹣
)2≥0
∴y≥ .
(4)若函數y= ,則y的取值范圍 .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,OD 是∠AOB 的平分線,∠AOC=2∠BOC.
(1)若 AO⊥CO,求∠BOD 的度數;
(2)若∠COD=21°,求∠AOB 的度數.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,AB∥EF,則∠A、∠C、∠D、∠E滿足的數量關系是( )
A. ∠A+∠C+∠D+∠E=360°
B. ∠A+∠D=∠C+∠E
C. ∠A-∠C+∠D+∠E=180°
D. ∠E-∠C+∠D-∠A=90°
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com