2.

定義:長寬比為$\sqrt{n}$:1(n為正整數)的矩形稱為$\sqrt{n}$矩形.
下面,我們通過折疊的方式折出一個$\sqrt{2}$矩形,如圖①所示.
操作1:將正方形ABCD沿過點B的直線折疊,使折疊后的點C落在對角線BD上的點G處,折痕為BH.
操作2:將AD沿過點G的直線折疊,使點A,點D分別落在邊AB,CD上,折痕為EF.
則四邊形BCEF為$\sqrt{2}$矩形.
證明:設正方形ABCD的邊長為1,則BD=$\sqrt{{1}^{2}+{1}^{2}}$=$\sqrt{2}$.
由折疊性質可知BG=BC=1,∠AFE=∠BFE=90°,則四邊形BCEF為矩形.
∴∠A=∠BFE.
∴EF∥AD.
∴$\frac{BG}{BD}$=$\frac{BF}{AB}$,即$\frac{1}{\sqrt{2}}$=$\frac{BF}{1}$.
∴BF=$\frac{1}{\sqrt{2}}$.
∴BC:BF=1:$\frac{1}{\sqrt{2}}$=$\sqrt{2}$:1.
∴四邊形BCEF為$\sqrt{2}$矩形.
閱讀以上內容,回答下列問題:
(1)在圖①中,所有與CH相等的線段是GH、DG.
(2)已知四邊形BCEF為$\sqrt{2}$矩形,模仿上述操作,得到四邊形BCMN,如圖②,求證:四邊形BCMN是$\sqrt{3}$矩形;
(3)將圖②中的$\sqrt{3}$矩形BCMN沿用(2)中的方式操作3次后,得到一個“$\sqrt{n}$矩形”,則n的值是6.