【題目】閱讀材料:把形如的二次三項式(或其一部分)配成完全平方式的方法叫配方法.配方法的基本形式是完全平方公式的逆寫,即
.請根據閱讀材料解決下列問題:
(1)填空:分解因式_____;
(2)若,求
的值;
(3)若、
、
分別是
的三邊,且
,試判斷
的形狀,并說明理由.
科目:初中數學 來源: 題型:
【題目】如圖,己知拋物線經過點A(l, 0),B(一3,0),C(0,3)三點.
(1)求拋物線的解析式;
(2)在x軸下方的拋物線上,是否存在點M,使得?若存在求出M點的坐標;若不存在,請說明理由;
(3)點P是位于直線BC上方的拋物線上的一個動點,是否存在點P,使的面積最大?若存在,求出P的坐標及
的最大值:若不存在,說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖1,已知拋物線y=﹣x2+
x﹣4與y軸相交于點A,與x軸相交于B和點C(點C在點B的右側,點D的坐標為(4,﹣4),將線段OD沿x軸的正方向平移n個單位后得到線段EF.
(1)當n= 時,點E或點F正好移動到拋物線上;
(2)當點F正好移動到拋物線上,EF與CD相交于點G時,求GF的長;
(3)如圖2,若點P是x軸上方拋物線上一動點,過點P作平行于y軸的直線交AC于點M,探索是否存在點P,使線段MP長度有最大值?若存在,求出點P的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在ABCD中,BD⊥BC,∠BDC=60°,∠DAB和∠DBC的平分線相交于點E,F為AE上一點,EF=EB,G為BD延長線上一點,BG=AB,連接GE.
(1)若ABCD的面積為9,求AB的長;
(2)求證:AF=GE.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知反比例函數的圖象經過點P(2,﹣3).
(1)求該函數的解析式;
(2)若將點P沿x軸負方向平移3個單位,再沿y軸方向平移n(n>0)個單位得到點P′,使點P′恰好在該函數的圖象上,求n的值和點P沿y軸平移的方向.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某縣為了落實中央的“強基惠民工程”,計劃將某村的居民自來水管道進行改造.該工程若由甲隊單獨施工恰好在規定時間內完成;若乙隊單獨施工,則完成工程所需天數是規定天數的1.5倍.如果由甲、乙隊先合做15天,那么余下的工程由甲隊單獨完成還需5天.
(1)這項工程的規定時間是多少天?
(2)已知甲隊每天的施工費用為6500元,乙隊每天的施工費用為3500元.為了縮短工期以減少對居民用水的影響,工程指揮部最終決定該工程由甲、乙隊合做來完成.則該工程施工費用是多少?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,一次函數y=kx+b的圖象分別與反比例函數y=的圖象在第一象限交于點A(4,3),與y軸的負半軸交于點B,且OA=OB.
(1)求函數y=kx+b和y=的表達式;
(2)已知點C(0,5),試在該一次函數圖象上確定一點M,使得MB=MC,求此時點M的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知:如圖,在平面直角坐標系中,為坐標原點,
,
,過點
畫
交直線
于
(即點
的縱坐標始終為
),連接
.
(1)求的長.
(2)若為等腰直角三角形,求
的值.
(3)在(2)的條件下求所在直線的表達式.
(4)用的代數式表示
的面積.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知關于x的方程x2-(m+2)x+(2m-1)=0。
(1)求證:方程恒有兩個不相等的實數根;
(2)若此方程的一個根是1,請求出方程的另一個根,并求以此兩根為邊長的直角三角形的周長。
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com