【題目】如圖,△AOB是直角三角形,∠AOB=90°,OB=2OA,點A在反比例函數y=的圖象上.若點B在反比例函數y=
的圖象上,則k的值為( 。
A.4B.﹣4C.8D.﹣8
【答案】D
【解析】
求函數的解析式只要求出B點的坐標就可以,過點A,B作AC⊥x軸,BD⊥x軸,分別于C,D.根據條件得到△ACO∽△ODB,得到,然后用待定系數法即可.
解:過點A,B作AC⊥x軸,BD⊥x軸,分別于C,D.
設點A的坐標是(m,n),則AC=n,OC=m,
∵∠AOB=90°,
∴∠AOC+∠BOD=90°,
∵∠DBO+∠BOD=90°,
∴∠DBO=∠AOC,
∵∠BDO=∠ACO=90°,
∴△BDO∽△OCA,
∴,
∵OB=2OA,
∴BD=2m,OD=2n,
因為點A在反比例函數y=的圖象上,則mn=2,
∵點B在反比例函數y=的圖象上,
∴B點的坐標是(2n,2m),
∴k=2n2m=4mn=8.
故選:D.
科目:初中數學 來源: 題型:
【題目】如圖,中,
,
.P是底邊
上的一個動點(P與B、C不重合),以P為圓心,
為半徑的
與射線
交于點D,射線
交射線
于點E.
(1)若點E在線段的延長線上,設
,
求y關于x的函數關系式,并寫出x的取值范圍.
(2)連接,若
,求
的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,直線y=﹣x+1與反比例函數y=的圖象相交于點A、B,過點A作AC⊥x軸,垂足為點C(﹣2,0),連接AC、BC.
(1)求反比例函數的解析式;
(2)求S△ABC;
(3)利用函數圖象直接寫出關于x的不等式﹣x+1<的解集.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】從﹣2,﹣,0,4中任取一個數記為m,再從余下的三個數中,任取一個數記為n,若k=mn.
(1)請用列表或畫樹狀圖的方法表示取出數字的所有結果;
(2)求正比例函數y=kx的圖象經過第一、三象限的概率.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在中,點F是邊BC的中點,連接AF并延長交DC的延長線于點E,連接AC、BE.
(1)求證:AB=CE;
(2)若,則四邊形ABEC是什么特殊四邊形?請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,△ABC是⊙O的內接三角形,AB是⊙O的直徑,OF⊥AB,交AC于點F,點E在AB的延長線上,射線EM經過點C,且∠ACE+∠AFO=180°.
(1)求證:EM是⊙O的切線;
(2)若∠A=∠E,BC=,求陰影部分的面積.(結果保留
和根號).
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知二次函數圖象的頂點坐標為M(1,0),直線y=x+m與該二次函數的圖象交于A,B兩點,其中A點的坐標為(3,4),B點在y軸上.P(a,0)是x軸上的一個動點,過P作x軸的垂線分別與直線AB和二次函數的圖象交于D、E兩點.
(1)求m的值及這個二次函數的解析式;
(2)若點P的橫坐標為2,求△ODE的面積;
(3)當0<a<3時,求線段DE的最大值;
(4)若直線AB與拋物線的對稱軸交點為N,問是否存在一點P,使以M、N、D、E為頂點的四邊形是平行四邊形?若存在,請求出此時P點的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在平面直角坐標系xOy中,已知點A,對點A作如下變換:
第一步:作點A關于x軸的對稱點A1;第二步:以O為位似中心,作線段OA1的位似圖形OA2,且相似比=q,則稱A2是點A的對稱位似點.
(1)若A(2,3),q=2,直接寫出點A的對稱位似點的坐標;
(2)已知直線l:y=kx-2,拋物線C:y=-x2+mx-2(m>0).點N(
,2k-2)在直線l上.
①當k=時,判斷E(1,-1)是否是點N的對稱位似點,請說明理由;
②若直線l與拋物線C交于點M(x1,y1)(x1≠0),且點M不是拋物線的頂點,則點M的對稱位似點是否可能仍在拋物線C上?請說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com