精英家教網 > 初中數學 > 題目詳情

【題目】如圖,O是矩形ABCD的對角線的交點,E,F,G,H分別是OA,OB,OC,OD上的點,且AE=BF=CG=DH.

(1)求證:四邊形EFGH是矩形;

(2)若E,F,G,H分別是OA,OB,OC,OD的中點,且DG⊥AC,OF=2cm,求矩形ABCD的面積.

【答案】(1)證明見解析;(2)矩形ABCD的面積為16(cm2).

【解析】

1)首先證明四邊形EFGH是平行四邊形,然后再證明HF=EG;
2)根據題干求出矩形的邊長CDBC,然后根據矩形面積公式求得.

證明:∵四邊形ABCD是矩形,

OAOBOCOD.

AEBFCGDH,

AOAEOBBFCOCGDODH,

OEOFOGOH,

∴四邊形EFGH是矩形.

解:∵GOC的中點,

GOGC.

又∵DGAC,

CDOD.

FBO中點,OF2cm,

BO4cm.

DOBO4cm,

DC4cm,DB8cm,

CB4 (cm)

∴矩形ABCD的面積為4×416 (cm2)

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖,在△ABC中,D是邊AB上一點,E是邊AC的中點,作CFABDE的延長線于點F

1)證明:△ADE≌△CFE;

2)若∠B=∠ACB,CE5,CF7,求DB

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】綜合題
(1)拋物線m1:y1=a1x2+b1x+c1中,函數y1與自變量x之間的部分對應值如表:

設拋物線m1的頂點為P,與y軸的交點為C,則點P的坐標為 , 點C的坐標為
(2)將設拋物線m1沿x軸翻折,得到拋物線m2:y2=a2x2+b2x+c2 , 則當x=-3時,y2=
(3)在(1)的條件下,將拋物線m1沿水平方向平移,得到拋物線m3 . 設拋物線m1與x軸交于A,B兩點(點A在點B的左側),拋物線m3與x軸交于M,N兩點(點M在點N的左側).過點C作平行于x軸的直線,交拋物線m3于點K.問:是否存在以A,C,K,M為頂點的四邊形是菱形的情形?若存在,請求出點K的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某書店老板去圖書批發市場購買某種圖書.第一次用1200元購書若干本,并按該書定價7元出售,很快售完.由于該書暢銷,第二次購書時,每本書的批發價已比第一次提高了20%,他用1500元所購該書數量比第一次多10本.當按定價7元售出150本時,出現滯銷,便以定價的5折售完剩余的書.

(1)每本書第一次的批發價是多少錢?

(2)試問該老板這兩次售書總體上是賠錢了,還是賺錢了(不考慮其它因素)?若賠錢,賠多少?若賺錢,賺多少?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,數軸上有三個點A、B、C,表示的數分別是﹣4、﹣2、3,請回答:

(1)若使C、B兩點的距離與A、B兩點的距離相等,則需將點C向左移動_____個單位;

(2)點A、B、C開始在數軸上運動,若點A以每秒1個單位長度的速度向左運動,同時,點B和點C分別以每秒2個單位長度和5個單位長度的速度向右運動,運動t秒鐘過后:

點A、B、C表示的數分別是_____、_____、_____ (用含t的代數式表示);

若點B與點C之間的距離表示為d1,點A與點B之間的距離表示為d2.試問:d1﹣d2的值是否隨著時間t的變化而改變?若變化,請說明理由;若不變,請求出d1﹣d2值.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】□ABCD如圖放置,若點B的坐標是(-3,4),點C的坐標是(-1,0),點D的坐標是(5,3),則點A的坐標是______.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在ABCD中,AEBD,CFBD,E,F分別為垂足.

1)求證:四邊形AECF是平行四邊形;

2)如果AE=3,EF=4,求AFEC所在直線的距離.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知:如圖,AB是⊙O的直徑,弦 ,∠B=60°,OD⊥AC,垂足為D.

(1)求OD的長;
(2)求劣弧AC的長.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖1所示,從邊長為a的正方形紙片中減去一個邊長為b的小正方形,再沿著線段AB剪開,把剪成的兩張紙拼成如圖2的等腰梯形(其面積= ).

(1)設圖1中陰影部分面積為S1,圖2中陰影部分面積為S2,請直接用含a、b的式子表示S1和S2;

(2)請寫出上述過程所揭示的乘法公式.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视