【題目】如圖1,已知線段AB=16cm,點C為線段AB上的一個動點,點D、E分別是AC和BC的中點.
(1)若點C恰為AB的中點,求DE的長;
(2)若AC=6cm,求DE的長;
(3)試說明不論AC取何值(不超過16cm),DE的長不變;
(4)知識遷移:如圖2,已知∠AOB=130°,過角的內部任一點C畫射線OC,若OD、OE分別平分∠AOC和∠BOC,試說明∠DOE=65°與射線OC的位置無關.
【答案】(1)8cm;(2)8cm;(3)不論AC取何值(不超過16cm),DE的長不變;(4)∠DOE=65°與射線OC的位置無關.
【解析】
試題分析:(1)根據中點的性質求出AC、BC的長,根據線段中點的定義計算即可;
(2)根據中點的性質求出AC、BC的長,根據線段中點的定義計算即可;
(3)根據中點的性質求出AC、BC的長,根據線段中點的定義計算即可說明結論;
(4)根據角平分線的定義得到∠DOC=∠AOC,∠EOC=
BOC,結合圖形計算即可.
解:(1)∵點C恰為AB的中點,
∴AC=BC=AB=8cm,
∵點D、E分別是AC和BC的中點,
∴DC=AC=4cm,CE=
BC=4cm,
∴DE=8cm;
(2)∵AB=16cm,AC=6cm,
∴BC=10cm,
由(1)得,DC=AC=3cm,CE=
CB=5cm,
∴DE=8cm;
(3)∵點D、E分別是AC和BC的中點,
∴DC=AC,CE=
BC,
∴DE=(AC+BC)=
AB,
∴不論AC取何值(不超過16cm),DE的長不變;
(4)∵OD、OE分別平分∠AOC和∠BOC,
∴∠DOC=∠AOC,∠EOC=
BOC,
∴∠DOE=∠DOC+∠EOC=(∠AOC+∠BOC)=
∠AOB=65°,
∴∠DOE=65°與射線OC的位置無關.
科目:初中數學 來源: 題型:
【題目】如圖1,將一個長為4a,寬為2b的長方形,沿圖中虛線均分成4個長方形,然后按圖2形狀拼成一個正方形.
(1)圖2中陰影部分的邊長是 (用含a、b的式子表示);
(2)若2a+b=7,且ab=3,求圖2中陰影部分的面積;
(3)觀察圖2,用等式表示出(2a﹣b)2,ab,(2a+b)2的數量關系是 .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】愛好思考的小茜在探究兩條直線的位置關系查閱資料時,發現了“中垂三角形”,即兩條中線互相垂直的三角形稱為“中垂三角形”.如圖(1)、圖(2)、圖(3)中,AM、BN是△ABC的中線,AM⊥BN于點P,像△ABC這樣的三角形均為“中垂三角形”.設BC=a,AC=b,AB=c.
(1)【特例探究】
如圖1,當tan∠PAB=1,c=4 時,a= , b=;
如圖2,當∠PAB=30°,c=2時,a= , b=;
(2)【歸納證明】
請你觀察(1)中的計算結果,猜想a2、b2、c2三者之間的關系,用等式表示出來,并利用圖3證明你的結論.
(3)【拓展證明】
如圖4,ABCD中,E、F分別是AD、BC的三等分點,且AD=3AE,BC=3BF,連接AF、BE、CE,且BE⊥CE于E,AF與BE相交點G,AD=3 ,AB=3,求AF的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,平面直角坐標系內,小正方形網格的邊長為1個單位長度, 的三個頂點的坐標分別
(1)畫出 關于
軸的對稱圖形
;
(2)畫出將 繞原點
逆時針方向旋轉
得到的
;
(3)求(2)中線段 掃過的圖形面積.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,四邊形OABC是菱形,點C的坐標為(4,0),∠AOC=60°,垂直于x軸的直線l從y軸出發,沿x軸正方向以每秒1個單位長度的速度向右平移,設直線l與菱形OABC的兩邊分別交于點M,N(點M在點N的上方),若△OMN的面積為S,直線l的運動時間為t 秒(0≤t≤4),則能大致反映S與t的函數關系的圖象是( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC 中,點 D,E 分別在邊 AC,AB 上,BD 與 CE 交于點 O,給出下列三個條件:①∠EBO=∠DCO;②BE=CD;③OB=OC.
(1)上述三個條件中,由哪兩個條件可以判定△ABC 是等腰三角形?(用序號寫出所有成立的情形)
(2)請選擇(1)中的一種情形,寫出證明過程.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某班在一次班會課上,就“遇見路人摔倒后如何處理”的主題進行討論,并對全班 50 名學生的處理方式進行統計,得出相關統計表和統計圖.
組別 | A | B | C | D |
處理方式 | 迅速離開 | 馬上救助 | 視情況而定 | 只看熱鬧 |
人數 | m | 30 | n | 5 |
請根據表圖所提供的信息回答下列問題:
(1)統計表中的 m= ,n= ;
(2)補全頻數分布直方圖;
(3)若該校有 2000 名學生,請據此估計該校學生采取“馬上救助”方式的學生有多少人?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】中學生帶手機上學的現象越來越受到社會的關注,為此,某記者隨機調查了某城區若干名學生家長對這種現象的態度(態度分為:A:無所謂;B:基本贊成;C:贊成;D:反對),并將調查結果繪制成頻數折線圖1和統計圖2(不完整)。請根據圖中提供的信息,解答下列問題:
(1)此次抽樣檢查中,共調查了 名學生家長;
(2)將圖1補充完整;
(3)根據抽樣檢查的結果,請你估計該市城區6000名中學生家長中有多少名家長持反對態度?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】 如圖,△ABC是等邊三角形,P是三角形內一點,PD∥AB,PE∥BC,PF∥AC,若△ABC的周長為18,則PD+PE+PF=( 。
A. 18B. 9
C. 6D. 條件不夠,不能確定
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com