【題目】如圖,在△ABC中,AB=AC,以AB為直徑的⊙O分別與BC,AC交于點D,E.過點D作DF⊥AC交AC于點F.
(1)求證:DF是⊙O的切線;
(2)若⊙O的半徑為8,∠CDF=22.5°,求陰影部分的面積.
【答案】(1)證明見解析;(2)S陰影= 16π﹣32.
【解析】試題分析:
(1)連接OD,AD,由AB是⊙O的直徑可得∠ADB=90°,結合AB=AC可得點D是BC的中點,結合點O是AB中點可得OD是△ABC的中位線,由此可得OD∥AC,結合DF⊥AC即可得到DF⊥OD,由此可得DF是⊙O的切線;
(2)連接OE,由DF⊥AC于點F結合∠CDF=22.5°可得∠C=67.5°,這樣結合AB=AC可得∠B=67.5°,從而可得∠BAC=45°,再結合AO=EO即可得到∠AOE=90°,這樣就可由S陰影=S扇形AOE-S△AOE求出S陰影的大小了.
試題解析:
(1)連接OD,AD.
∵AB是⊙O的直徑,
∴∠ADB=90°,
∵AB=AC,∠ADB=90°,
∴BD=CD,
∵AO=BO,
∴OD是△ABC的中位線,
∴OD∥AC,
∵DF⊥AC,
∴半徑OD⊥DF,
∴DF是⊙O的切線.
(2)連接OE.
∵DF⊥AC,∠CDF=22.5°,
∴∠C=67.5°,
∵AB=AC,
∴∠C=∠B=67.5°,
∴∠BAC=45°,
∵OA=OE,
∴∠AOE=90°,
又∵⊙O的半徑為8,
∴S陰影=S扇形AOE﹣S△AOE=16π﹣32.
科目:初中數學 來源: 題型:
【題目】如圖,點P是正方形ABCD的對角線BD上一點,PE⊥BC于點E,PF⊥CD于點F,連接EF.給出下列五個結論:①AP=EF;②AP⊥EF;③△APD一定是等腰三角形;④∠PFE=∠BAP;⑤PD=EC.其中正確結論的序號是( 。
A. ①②③④B. ①②④⑤C. ②③④⑤D. ①③④⑤
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,將四張邊長各不相同的正方形紙片按如圖方式放入矩形ABCD內(相鄰紙片之間互不重疊也無縫隙),未被四張正方形紙片覆蓋的部分用陰影表示,設右上角與左下角陰影部分的周長的差為l.若知道l的值,則不需要測量就能知道周長的正方形的標號為( )
A.①B.②C.③D.④
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】把四張形狀大小完全相同的小長方形卡片(如圖①)不重疊的放在一個底面為長方形(長為a厘米,寬為b厘米)的盒子底部(如圖②),盒子底面未被卡片覆蓋的部分用陰影表示,則圖②中兩塊陰影部分的周長和是( )
A. 4a厘米B. 4b厘米C. 2(a+b)厘米D. 4(a-b)厘米
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】現代互聯網技術的廣泛應用,催生了快遞行業的高速發展.阜陽市某家快遞公司,2017年3月份與5月份完成投遞的快遞總件數分別為10萬件和12.1萬件.現假定該公司每月投遞的快遞總件數的增長率相同.
(1)求該快遞公司投遞快遞總件數的月平均增長率?
(2) 如果平均每人每月最多可投遞快遞0.6萬件,那么該公司現有的21名快遞投遞業務員能否完成2017年6月份的快遞投遞任務?如果不能,請問至少需要增加幾名業務員?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】將正整數1至2018按一定規律排列如下表:
平移表中帶陰影的方框,方框中三個數的和可能是( 。
A. 2018 B. 2019 C. 2040 D. 2049
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,反比例函數y1=的圖象與一次函數y2=
的圖象交于點A,B,點B的橫坐標實數4,點P(1,m)在反比例函數y1=
的圖象上.
(1)求反比例函數的表達式;
(2)觀察圖象回答:當x為何范圍時,y1>y2;
(3)求△PAB的面積.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在□ABCD中,∠ABD=90°,延長AB至點E,使BE=AB,連接CE.
(1)求證:四邊形BECD是矩形;
(2)連接DE交BC于點F,連接AF,若CE=2,∠DAB=30°,求AF的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某食品廠從生產的袋裝食品中抽出樣品20袋,檢測每袋的質量是否符合標準,超過或不足的部分分別用正、負數來表示,記錄如下表:
與標準質量的差值 (單位:克) |
|
| 0 | 1 | 3 | 6 |
袋 數 | 1 | 4 | 3 | 4 | 5 | 3 |
(1)這批樣品的平均質量比標準質量多還是少?多或少幾克?
(2)若標準質量為450克,則抽樣檢測的20袋食品的總質量為多少克?
(3)若該種食品的合格標準為450±5克,求該食品的抽樣檢測的合格率.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com