【題目】如圖,在平面直角坐標系中,Rt△ABC的三個頂點分別是A(﹣3,2),B(0,4),C(0,2).
(1)①將△ABC以點C為旋轉中心旋轉180°,畫出旋轉后對應的△A1B1C;平移△ABC,若點A的對應點A2的坐標為(0,﹣4),畫出平移后對應的△A2B2C2;
②若將△A1B1C繞某一點旋轉可以得到△A2B2C2;請直接寫出旋轉中心的坐標;
(2)在x軸上有一點P,使得PA+PB的值最小,請直接寫出點P的坐標.
【答案】
(1)解:①△ABC旋轉后對應的△A1B1C,△ABC平移后對應的△A2B2C2如圖所示
②如圖所示:旋轉中心的坐標為:( ,﹣1)
(2)解:∵PO∥AC,
∴ =
,
∴ =
,
∴OP=2,
∴點P的坐標為(﹣2,0)
【解析】(1)延長AC到A1 , 使得AC=A1C,延長BC到B1 , 使得BC=B1C,利用點A的對應點A2的坐標為(0,﹣4),得出圖象平移單位,即可得出△A2B2C2;根據△△A1B1C繞某一點旋轉可以得到△A2B2C2進而得出,旋轉中心即可;(2)根據B點關于x軸對稱點為A2 , 連接AA2 , 交x軸于點P,再利用相似三角形的性質求出P點坐標即可.
【考點精析】解答此題的關鍵在于理解軸對稱-最短路線問題的相關知識,掌握已知起點結點,求最短路徑;與確定起點相反,已知終點結點,求最短路徑;已知起點和終點,求兩結點之間的最短路徑;求圖中所有最短路徑.
科目:初中數學 來源: 題型:
【題目】在平面直角坐標系中,將點
向右平移
個單位到點
,再將點
繞坐標原點順時針旋轉
到點
.直接寫出點
,
的坐標;23.
在平面直角坐標系中,將第二象限內的點
向右平移
個單位到第一象限點
,再將點
繞坐標原點順時針旋轉
到點
,直接寫出點
,
的坐標;
在平面直角坐標系中.將點
沿水平方向平移
個單位到點
,再將點
繞坐標原點順時針旋轉
到點
,直接寫出點
的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC中,∠ACB=90°,AC=BC,△ABC的高CD與角平分線AE相交點F,過點C作CH⊥AE于G,交AB于H.
(1)直接寫出∠CFE的度數________;
(2)求證:CF=BH.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,D為△ABC內一點,CD平分∠ACB,BD⊥CD,∠A=∠ABD,若AC=5,BC=3,則BD的長為( 。
A. 1 B. 1.5 C. 2.5 D. 4
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖:在∠AOB的兩邊截取OA=OB,OC=OD,連接AD,BC交于點P,則下列結論中①△AOD≌△BOC,②△APC≌△BPD,③點P在∠AOB的平分線上。 正確的是 (填序號)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,圓柱形玻璃杯高為12cm、底面周長為18cm,在杯內離杯底4cm的點C
處有一滴蜂蜜,此時一只螞蟻正好在杯外壁,離杯上沿4cm與蜂蜜相對的點A處,則螞蟻到達蜂蜜的最
短距離為 ▲ cm.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】為了考察冰川的融化狀況,一支科考隊在某冰川上設定一個以大本營O為圓心,半徑為4km的圓形考察區域,線段P1P2是冰川的部分邊界線(不考慮其它邊界),當冰川融化時,邊界線沿著與其垂直的方向朝考察區域平行移動,若經過n年,冰川的邊界線P1P2移動的距離為s(km),并且s與n(n為正整數)的關系是s= n2﹣
n+
.以O為原點,建立如圖所示的平面直角坐標系,其中P1、P2的坐標分別為(﹣4,9)、(﹣13、﹣3).
(1)求線段P1P2所在直線對應的函數關系式;
(2)求冰川邊界線移動到考察區域所需的最短時間.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com