【題目】如圖,將沿著過
中點
的直線折疊,使點
落在
邊上的
,稱為第
次操作,折痕
到
的距離記為
;還原紙片后,再將
沿著過
中點
的直線折疊,使點
落在
邊上的
處,稱為第
次操作,折痕
到
的距離記為
;按上述方法不斷操作下去…,經過第
次操作后得到的折痕
,到
的距離記為
,若
,則
的值為( )
A.B.
C.
D.
【答案】B
【解析】
根據中點的性質及折疊的性質可得DA=DA'=DB,從而可得∠ADA'=2∠B,結合折疊的性質可得∠ADA'=2∠ADE,可得∠ADE=∠B,繼而判斷DE∥BC,得出DE是△ABC的中位線,證得A A1⊥BC,得到AA1=2,求出h1=2-1=1,同理,h2=2-,h3=2-
×
=2-
,經過第n次操作后得到的折痕Dn-1En-1到BC的距離hn=2-
.
解:由折疊的性質可得:AA1⊥DE,DA=DA1,
又∵D是AB中點,
∴DA=DB,
∴DB=DA1,
∴∠BA1D=∠B,
∴∠ADA1=2∠B,
又∵∠ADA1=2∠ADE,
∴∠ADE=∠B,
∴DE∥BC,
∴AA1⊥BC,
∴AA1=2h1=2,
∴h1=2-1=1,
同理,h2=2-,h3=2-
×
=2-
…
∴經過第n次操作后得到的折痕Dn-1En-1到BC的距離hn=2-.
∴h2019=.
故選B.
科目:初中數學 來源: 題型:
【題目】閱讀材料,解決問題:
材料1:在研究數的整除時發現:能被5、25、125、625整除的數的特征是:分別看這個數的末一位、末兩位、末三位、末四位即可,推廣成一條結論;末位能被
整除的數,本身必能被
整除,反過來,末
位不能被
整除的數,本身也不可能被
整除,例如判斷992250能否被25、625整除時,可按下列步驟計算:
,
為整數,
能被25整除
,
不為整數,
不能被625整除
材料2:用奇偶位差法判斷一個數能否被11這個數整除時,可把這個數的奇位上的數字與偶位上的數字分別加起來,再求它們的差,看差能否被11整除,若差能被11整除,則原數能被11整除,反之則不能.
(1)若這個三位數能被11整除,則
;在該三位數末尾加上和為8的兩個數字,讓其成為一個五位數,該五位數仍能被11整除,求這個五位數
(2)若一個六位數p的最高位數字為5,千位數字是個位數字的2倍,且這個數既能被125整除,又能被11整除,求這個數.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,∠AOB為直角,∠AOC為銳角,且OM平分∠BOC,ON平分∠AOC.
(1)如果∠AOC=50°,求∠MON的度數;
(2)如果∠AOC為任意一個銳角,你能求出∠MON的度數嗎?若能,請求出來,若不能,說明為什么?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】每天早晨王老師7點準時騎自行車去學校上班,今天早晨由于走的匆忙,忘帶一樣重要東西。當他騎車至距學校6千米處時,原地返回,加速回到家,取完東西又以最初出發時的速度騎車去學校。如圖是王老師今早出行的過程中他距學校的距離y(km)與他離家所用時間x(min)之間的函數圖像.
根據圖像解答下列問題:
(1)求直線AB的解析式.
(2)如果學校8:30準時上課,請問王老師能否按時到校上課?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知:如圖,AB為⊙O的直徑,⊙O過AC的中點D,DE⊥BC于點E.
(1)求證:DE為⊙O的切線;
(2)若DE=2,tanC=,求⊙O的直徑.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,為線段
上一動點(不與點
、
重合),在
同側分別作等邊
和等邊
,
與
交于點
,
與
交于點
,
與
交于點
,連接
、
,以下五個結論:①
;②
;③
;④
;⑤
平分
.一定成立的結論有______________;
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知,點為二次函數
圖象的頂點,直線
分別交
軸正半軸,
軸于點
,
.
(1)判斷頂點是否在直線
上,并說明理由.
(2)如圖1,若二次函數圖象也經過點,
,且
,根據圖象,寫出
的取值范圍.
(3)如圖2,點坐標為
,點
在
內,若點
,
都在二次函數圖象上,試比較
與
的大小.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】(9分)如圖,△ABC為等腰三角形,AC=BC,以邊BC為直徑的半圓與邊AB,AC分別交于D,E兩點,過點D作DF⊥AC,垂足為點F.
(1)判斷DF與⊙O的位置關系,并證明你的結論;
(2)若BC=9,EF=1,求DF的長.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com