【題目】設都是實數,且
.我們規定:滿足不等式
的實數
的所有取值的全體叫做閉區間,表示為
.對于一個函數,如果它的自變量
與函數值
滿足:當
時,有
,我們就稱此函數是閉區間
上的“閉函數”.
(1)反比例函數是閉區間
上的“閉函數”嗎?請判斷并說明理由;
(2)若一次函數是閉區間
上的“閉函數”,求此一次函數的解析式.
科目:初中數學 來源: 題型:
【題目】下列式子正確的是( )
A.(a﹣b)2=a2﹣2ab+b2
B.(a﹣b)2=a2﹣b2
C.(a﹣b)2=a2+2ab+b2
D.(a﹣b)2=a2﹣ab+b2
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】把多項式x3﹣xy2+x2y+x4﹣3按x的降冪排列,正確的是( )
A.x4+x3+x2y﹣3﹣xy2
B.﹣xy2+x2y+x4+x3﹣3
C.﹣3﹣xy2+x2y+x3+x4
D.x4+x3+x2y﹣xy2﹣3
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖:A,D,E在同一條直線上,AD=3,DE=1,BD,DF分別為正方形ABCD,正方形DEFG的對角線,則三角形△BDF的面積為( 。
A.4.5
B.3
C.4
D.2
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】(12分)已知O是直線AB上的一點,∠COD是直角,OE平分∠BOC.
(1)如圖①,若∠AOC=30°,求∠DOE的度數;
(2)在圖①中,若∠AOC=a,直接寫出∠DOE的度數(用含a的代數式表示);
(3)將圖①中的∠DOC繞頂點O順時針旋轉至圖②的位置.
①探究∠AOC和∠DOE的度數之間的關系,寫出你的結論,并說明理由;
②在∠AOC的內部有一條射線OF,且∠AOC-4∠AOF=2∠BOE+∠AOF,試確定∠AOF與∠DOE的度數之間的關系,說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】“為了安全,請勿超速”.如圖,一條公路建成通車,在某直線路段MN限速60千米/小時,為了檢測車輛是否超速,在公路MN旁設立了觀測點C,從觀測點C測得一小車從點A到達點B行駛了5秒鐘,已知∠CAN=45°,∠CBN=60°,BC=200米,此車超速了嗎?請說明理由.
(參考數據:≈1.41,
≈1.73)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,一條流水生產線上L1、L2、L3、L4、L5處各有一名工人在工作,現要在流水生產線上設置一個零件供應站P,使五人到供應站P的距離總和最小,這個供應站設置的位置是( )
A. L2處 B. L3處 C. L4處 D. 生產線上任何地方都一樣
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com