【題目】近幾年購物的支付方式日益增多,某數學興趣小組就此進行了抽樣調查,調查結果顯示支付方式有:微信、
支付寶、
現金、
其他.該小組對某超市一天內購買者的支付方式進行調查統計,得到如下兩幅不完整的統計圖.請你根據統計圖提供的信息,解答下列問題:
(1)本次一共調查了 名購買者?
(2)請補全條形統計圖;在扇形統計圖中,種支付方式所對應的圓心角為 度;
(3)若該超市這一周內有2000名購買者,請你估計使用和
兩種支付方式的購買者共有多少名?
【答案】(1)200;(2)補圖見解析;72;(3)1160名.
【解析】
(1)根據B的數量和所占的百分比可以求得本次調查的購買者的人數;
(2)根據統計圖中的數據可以求得選擇A和D的人數,從而可以將條形統計圖補充完整,求得在扇形統計圖中A種支付方式所對應的圓心角的度數;
(3)根據統計圖中的數據可以計算出使用A和B兩種支付方式的購買者共有多少名.
(1)由條形統計圖中知B的人數為56人,由扇形統計圖中知B所占的百分比為28%,
∴本次調查的購買者的人數為:名,
故答案為:200;
(2) D種支付方式的人數為(人),
則A種支付方式的人數為(人),
補全的條形統計圖如圖所示,
在扇形統計圖中D種支付方式所對應的圓心角為:,
故答案為:;
(3) 2000名購買者中使用A和B兩種支付方式的購買者共有:
(名) .
答:2000名購買者中使用A和B兩種支付方式的購買者共有1160名.
科目:初中數學 來源: 題型:
【題目】如圖,DB∥AC,且DB=AC,E是AC的中點,
(1)求證:BC=DE;
(2)連接AD、BE,若要使四邊形DBEA是矩形,則給△ABC添加什么條件,為什么?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知點A,C在EF上,AD∥BC,DE∥BF,AE=CF.
(1)求證:四邊形ABCD是平行四邊形;
(2)直接寫出圖中所有相等的線段(AE=CF除外).
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,是
的直徑,弦
,
(1)求證:是等邊三角形.
(2)若點是
的中點,連接
,過點
作
,垂足為
,若
,求線段
的長;
(3)若的半徑為4,點
是弦
的中點,點
是直線
上的任意一點,將點
繞點
逆時針旋轉60°得點
,求線段
的最小值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】跳繩是大家喜聞樂見的一項體育運動,集體跳繩時,需要兩人同頻甩動繩子,當繩子甩到最高處時,其形狀可近似看作拋物線.如圖是小明和小亮甩繩子到最高處時的示意圖,兩人拿繩子的手之間的距離為,離地面的高度為
,以小明的手所在位置為原點,建立平面直角坐標系.
(1)當身高為的小紅站在繩子的正下方,且距小明拿繩子手的右側
處時,繩子剛好通過小紅的頭頂,求繩子所對應的拋物線的表達式;
(2)若身高為的小麗也站在繩子的正下方.
①當小麗在距小亮拿繩子手的左側處時,繩子能碰到小麗的頭嗎?請說明理由;
③設小麗與小亮拿繩子手之間的水平距離為,為保證繩子不碰到小麗的頭頂,求
的取值范圍.(參考數據:
取3.16)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】我們研究過的圖形中,圓的任何一對平行切線的距離總是相等的,所以圓是“等寬曲線”.除了圓以外,還有一些幾何圖形也是“等寬曲線”,如勒洛三角形(如圖),它是分別以等邊三角形的每個頂點為圓心,以邊長為半徑,在另兩個頂點間畫一段圓弧,三段圓弧圍成的曲邊三角形. 圖
是等寬的勒洛三角形和圓形滾木的截面圖.
圖 圖
有如下四個結論:
①勒洛三角形是中心對稱圖形
②圖中,點
到
上任意一點的距離都相等
③圖中,勒洛三角形的周長與圓的周長相等
④使用截面是勒洛三角形的滾木來搬運東西,會發生上下抖動
上述結論中,所有正確結論的序號是( )
A.①②B.②③C.②④D.③④
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】平面直角坐標系中有點
和某一函數圖象
,過點
作
軸的垂線,交圖象
于點
,設點
,
的縱坐標分別為
,
.如果
,那么稱點
為圖象
的上位點;如果
,那么稱點
為圖象
的圖上點;如果
,那么稱點
為圖象
的下位點.
(1)已知拋物線.
① 在點A(-1,0),B(0,-2),C(2,3)中,是拋物線的上位點的是 ;
② 如果點是直線
的圖上點,且為拋物線的上位點,求點
的橫坐標
的取值范圍;
(2)將直線在直線
下方的部分沿直線
翻折,直線
的其余部分保持不變,得到一個新的圖象,記作圖象
.⊙
的圓心
在
軸上,半徑為
.如果在圖象
和⊙
上分別存在點
和點F,使得線段EF上同時存在圖象
的上位點,圖上點和下位點,求圓心
的橫坐標
的取值范圍.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在中,
,點
在線段
上,以
為直徑的
與
相交于點
,與
相交于點
,
.
(1)求證:是
的切線;
(2)在(1)的條件下,判斷以為頂點的四邊形為哪種特殊四邊形,并說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】全面兩孩政策實施后,甲,乙兩個家庭有了各自的規劃.假定生男生女的概率相同,回答下列問題:
(1)甲家庭已有一個男孩,準備再生一個孩子,則第二個孩子是女孩的概率是 ;
(2)乙家庭沒有孩子,準備生兩個孩子,求至少有一個孩子是女孩的概率.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com