【題目】如圖,在等邊△ABC中,過A,B,C三點在三角形內分別作∠1=∠2=∠3,三個角的邊相交于D,E,F,
(1)△ABD,△BCE,△CAF是否全等?如果是,請選擇其中一對進行證明.
(2)△DEF是否為正三角形?請說明理由.
【答案】(1)見解析;(2)見解析;
【解析】
(1)由正三角形的性質得出∠CAB=∠ABC=∠BCA=60°,AB=BC,證出∠ABD=∠BCE,由ASA證明△ABD≌△BCE即可;
(2)由全等三角形的性質得出∠ADB=∠BEC=∠CFA,證出∠FDE=∠DEF=∠EFD,即可得出結論;
(1)∵△ABC是正三角形,
∴∠CAB=∠ABC=∠BCA=60°,AB=BC,
∵∠ABD=∠ABC-∠2,∠BCE=∠ACB-∠3,∠2=∠3,
∴∠ABD=∠BCE,
在△ABD和△BCE中
,
∴△ABD≌△BCE(ASA);
(2)△DEF是正三角形;理由如下:
∵△ABD≌△BCE≌△CAF,
∴∠ADB=∠BEC=∠CFA,
∴∠FDE=∠DEF=∠EFD,
∴△DEF是正三角形;
科目:初中數學 來源: 題型:
【題目】問題情境:在綜合與實踐課上,同學們以“已知三角形三邊的長度,求三角形面積”為主題開展數學活動,小穎想到借助正方形網格解決問題。圖1、圖2都是8×8的正方形網格,每個小正方形的邊長均為1,每個小正方形的頂點稱為格點。
操作發現:小穎在圖1中畫出△ABC,其頂點A、B、C都是格點,同時構造正方形BDEF,使它的頂點都在格點上,且它的邊DE、EF分別經過點C、A,她借助此圖求出了△ABC的面積。
(1)在圖1中,小穎所畫的△ABC的三邊長分別是AB= ,BC= ,AC= ;△ABC的面積為 。
(2)請你根據小穎的思路,在圖2中以格點為頂點畫一個△DEF,使三角形三邊長分別為2、、
,并直接寫出△DEF的面積= 。
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知△ABC的三個頂點分別為A(2,3)、B(3,1)、C(-2,-2).
(1)請在圖中作出△ABC關于y軸對稱圖形△DEF(A、B、C的對應點分別是D、E、F),并直寫出D、E、F的坐標.D、E、F點的坐標是:D( , ) E( , ) F( , );
(2)求四邊形ABED的面積.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】下圖取材于我國古代數學家趙爽的《勾股圓方圖》,由四個全等的直角三角形與中間的小正方形拼成的一個大正方形如果大正方形的面積是13,小正方形的面積是4,直角三角形的較短直角邊為a,較長直角邊為b,那么的值為______________.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,二次函數的圖象與兩坐標軸分別交于
,
,
三點,一次函數的圖象與拋物線交于
,
兩點.
求點
,
,
的坐標;
當兩函數的函數值都隨著
的增大而增大,求
的取值范圍;
當自變量
滿足什么范圍時,一次函數值大于二次函數值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,△ABC中,A、B兩個頂點在軸的上方,點C的坐標是(1,0).以點C為位似中心,在x軸的下方作△ABC的位似圖形,并把△ABC的邊長放大到原來的2倍,設點B的對應點B′的橫坐標是a,則點B的橫坐標是( )
A. B.
C.
D.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】拋物線y=ax2+bx+c(a≠0)的對稱軸為直線x=﹣1,與x軸的一個交點A在點(﹣3,0)和(﹣2,0)之間,其部分圖象如圖,則下列結論:①4ac﹣b2<0;②2a﹣b=0;③a+b+c<0;④點M(x1,y1)、N(x2,y2)在拋物線上,若x1<x2,則y1≤y2,其中正確結論的個數是( )
A.1個 B.2個 C.3個 D.4個
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com