【題目】數學活動課上,老師和學生一起去測量學校升旗臺上旗桿AB的高度,如圖,老師測得升旗臺前斜坡FC的坡比為iFC=1:10(即EF:CE=1:10),學生小明站在離升旗臺水平距離為35m(即CE=35m)處的C點,測得旗桿頂端B的仰角為α,已知tanα=,升旗臺高AF=1m,小明身高CD=1.6m,請幫小明計算出旗桿AB的高度.
科目:初中數學 來源: 題型:
【題目】(1)操作發現:如圖①,小明畫了一個等腰三角形ABC,其中AB=AC,在△ABC的外側分別以AB,AC為腰作了兩個等腰直角三角形ABD,ACE,分別取BD,CE,BC的中點M,N,G,連接GM,GN.小明發現了:線段GM與GN的數量關系是__________;位置關系是__________.
(2)類比思考:
如圖②,小明在此基礎上進行了深入思考.把等腰三角形ABC換為一般的銳角三角形,其中AB>AC,其它條件不變,小明發現的上述結論還成立嗎?請說明理由.
(3)深入研究:
如圖③,小明在(2)的基礎上,又作了進一步的探究.向△ABC的內側分別作等腰直角三角形ABD,ACE,其它條件不變,試判斷△GMN的形狀,并給與證明.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】再讀教材:寬與長的比是(約為0.618)的矩形叫作黃金矩形.黃金矩形給我們以協調、勻稱的美感,世界各國許多著名的建筑,為取得最佳的視覺效果,都采用了黃金矩形的設計.下面,我們用寬為2的矩形紙片折疊黃金矩形(提示:
).
第一步:在矩形紙片一端 ,利用圖1的方法折出一個正方形,然后把紙片展平;
第二步:如圖2,把這個正方形折成兩個相等的矩形,再把紙片展平;
圖1 圖2
第三步:折出內側矩形的對角線,并把
折到圖3中所示的
處;
第四步:展平紙片,按照所得的點折出
,使
,則圖4中就會出現黃金矩形.
圖3 圖4
(1)在圖3中_________ (保留根號);
(2)如圖3,則四邊形的形狀是_________;
(3)在圖4中黃金矩形是_________.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,AB為⊙O直徑,OE⊥BC垂足為E,AB⊥CD垂足為F.
(1)求證:AD=2OE;
(2)若∠ABC=30°,⊙O的半徑為2,求兩陰影部分面積的和.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知拋物線y=ax2﹣2ax+c(a<0)的圖象過點A(3,m).
(1)當a=﹣1,m=0時,求拋物線的頂點坐標_____;
(2)如圖,直線l:y=kx+c(k<0)交拋物線于B,C兩點,點Q(x,y)是拋物線上點B,C之間的一個動點,作QD⊥x軸交直線l于點D,作QE⊥y軸于點E,連接DE.設∠QED=β,當2≤x≤4時,β恰好滿足30°≤β≤60°,a=_____.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在四邊形ABCD中,∠B=90°,∠D=45°,AB=BC=2,點E為四邊形ABCD內部一點,且滿足CE2﹣AE2=2BE2,則點E在運動過程中所形成的圖形的長為______.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,與
軸交于點C,與
軸的正半軸交于點K,過點
作
軸交拋物線于另一點B,點
在
軸的負半軸上,連結
交
軸于點A,若
.
(1)用含的代數式表示
的長;
(2)當時,判斷點
是否落在拋物線上,并說明理由;
(3)過點作
軸交
軸于點
延長
至
,使得
連結
交
軸于點
連結AE交
軸于點
若
的面積與
的面積之比為
則求出拋物線的解析式.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在四邊形ABCD中,DC∥AB,DA⊥AB,AD=4cm,DC=5cm,AB=8cm.如果點P由B點出發沿BC方向向點C勻速運動,同時點Q由A點出發沿AB方向向點B勻速運動,它們的速度均為1cm/s,當P點到達C點時,兩點同時停止運動,連接PQ,設運動時間為t s,解答下列問題:
(1)當t為何值時,P,Q兩點同時停止運動;
(2)設△PQB的面積為S,當t為何值時,S取得最大值,并求出最大值;
(3)當△PQB為等腰三角形時,求t的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】菱形中,對角線
,
,動點
、
分別從點
、
同時出發,運動速度都是
,點
由
向
運動;點
由
向
運動,當
到達點
時,
,
兩點運動停止,設時間為
秒
.連接
,
,
.
(1)當為何值時,
;
(2)設的面積為
,請寫出
與
的函數關系式;
(3)當為何值時,
的面積是四邊形
面積的
;
(4)是否存在值,使得線段
經過
的中點
;若存在,求出
值;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com