精英家教網 > 初中數學 > 題目詳情

【題目】位于合肥濱湖新區的渡江戰役紀念館,實物圖如圖1所示,示意圖如圖2所示.某學校數學興趣小組通過測量得知,紀念館外輪廓斜坡AB的坡度i=1:,底基BC=50m,∠ACB=135°,求館頂A離地面BC的距離.(結果精確到0.1m,參考數據:≈1.41,≈1.73)

【答案】館頂A離地面BC的距離約為68.3m

【解析】

作出輔助線,證明ADC為等腰直角三角形,根據斜坡AB的坡度i=1:,列式解題即可.

如解圖,過點AADBCBC的延長線于點D.

∵∠ACB=135°

∴△ADC為等腰直角三角形,

AD=x,則CD=x,BD=50+x,

∵斜坡AB的坡度i=1:

x:(50+x)=1:,

整理得(﹣1)x=50,

解得x=25(+1)≈68.3.

答:館頂A離地面BC的距離約為68.3 m.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】已知方程ax2+bx+c=0(a≠0)是關于x的一元二次方程.

(1)直接寫出方程根的判別式;

(2)寫出求根公式的推導過程.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在平面直角坐標系中,矩形OABC的邊OAy軸的正半軸上,Cx軸的正半軸上,已知A(0,8)、C(10,0),作∠AOC的平分線交AB于點D,連接CD,過點DDECDOA于點E

(1)求點D的坐標;

(2)求證:△ADE≌△BCD;

(3)拋物線yx2x+8經過點AC,連接AC.探索:若點Px軸下方拋物線上一動點,過點P作平行于y軸的直線交AC于點M.是否存在點P,使線段MP的長度有最大值?若存在,求出點P的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在RtABC中,∠BAC=90°,以AB為直徑作⊙OBC于點DEAC的中點,連接DE并延長交BA的延長線于點F

1)求證:DE是⊙O的切線;

2)若∠F=30°O的半徑為2,求圖中陰影部分的面積.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】A,B,C三名大學生競選系學生會主席,他們的筆試成績和口試成績(單位分別用了兩種方式進行了統計如表和圖1:

(1)請將表和圖1中的空缺部分補充完整

(2)競選的最后一個程序是由本系的300名學生進行投票,三位候選人的得票情況如圖2(沒有棄權票每名學生只能推薦一個),B在扇形統計圖中所占的圓心角的度數是______.

(3)若每票計1,系里將筆試、口試、得票三項測試得分按4:3:3的比例確定個人成績,請計算三位候選人的最后成績并根據成績判斷誰能當選

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖是一座人行天橋的示意圖,天橋的高度是10米,CBDB,坡面AC的傾斜角為45°.為了方便行人推車過天橋,市政部門決定降低坡度,使新坡面DC的坡度為i=3.若新坡角下需留3米寬的人行道,問離原坡角(A點處)10米的建筑物是否需要拆除?(參考數據: ≈1.414, ≈1.732

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】閱讀下面的材料,回答問題:

解方程x4-5x2+4=0,這是一個一元四次方程,根據該方程的特點,它的解法通常是:

x2=y,那么x4=y2,于是原方程可變為y2-5y+4=0 ①,解得y1=1,y2=4.

y=1時,x2=1,x=±1;當y=4時,x2=4,x=±2;

∴原方程有四個根:x1=1,x2=-1,x3=2,x4=-2.

(1)在由原方程得到方程①的過程中,利用 法(把未知數x換為 y達到降次的目的.

(2)解方程:(x2+3x)2+5(x2+3x)-6=0.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,AB是⊙O的直徑,C是弧的中點,⊙O的切線BD交AC的延長線于點D,E是OB的中點,CE的延長線交切線BD于點F,AF交⊙O于點H,連接BH.

⑴求證:AC=CD.

⑵若OB=2,求BH的長.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,點A,B,C都在拋物線y=ax2﹣2amx+am2+2m﹣5(其中﹣<a<0)上,ABx軸,∠ABC=135°,且AB=4.

(1)填空:拋物線的頂點坐標為 (用含m的代數式表示);

(2)求ABC的面積(用含a的代數式表示);

(3)若ABC的面積為2,當2m﹣5≤x≤2m﹣2時,y的最大值為2,求m的值.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视