【題目】如圖,D是△ABC外接圓上的動點,且B,D位于AC的兩側,DE⊥AB,垂足為E,DE的延長線交此圓于點F.BG⊥AD,垂足為G,BG交DE于點H,DC,FB的延長線交于點P,且PC=PB.
(1)求證:BG∥CD;
(2)設△ABC外接圓的圓心為O,若AB=DH,∠OHD=80°,求∠BDE的大小.
【答案】(1)證明見解析;(2)∠BDE的度數為20°或40°.
【解析】
(1)PC=PB,得到∠PCB=∠PBC,根據圓內接四邊形的性質,得到∠BAD+∠BCD=180°,根據同角的補角相等得到∠BAD=∠PCB,根據圓周角定理得到∠BAD=∠BFD,等量代換得到∠BFD=∠PCB=∠PBC,即可證明BC∥DF,根據AC是⊙O的直徑,得到
∠ADC=90°,根據BG⊥AD,得到∠ADC=∠AGB,即可證明BG∥CD;
(2)分①當點O在DE的左側和②當點O在DE的右側兩種情況進行討論.
(1)證明:如圖1,
∵PC=PB,
∴∠PCB=∠PBC,
∵四邊形ABCD內接于圓,
∴∠BAD+∠BCD=180°,
∵∠BCD+∠PCB=180°,
∴∠BAD=∠PCB,
∵∠BAD=∠BFD,
∴∠BFD=∠PCB=∠PBC,
∴BC∥DF,
∵DE⊥AB,
∴∠DEB=90°,
∴∠ABC=90°,
∴AC是⊙O的直徑,
∴∠ADC=90°,
∵BG⊥AD,
∴∠AGB=90°,
∴∠ADC=∠AGB,
∴BG∥CD;
(2)由(1)得:BC∥DF,BG∥CD,
∴四邊形BCDH是平行四邊形,
∴BC=DH,
在Rt△ABC中,∵
∴tan∠ACB=
∴∠ACB=60°,∠BAC=30°,
∴∠ADB=60°,
∴
①當點O在DE的左側時,如圖2,作直徑DM,連接AM、OH,則∠DAM=90°,
∴∠AMD+∠ADM=90°
∵DE⊥AB,
∴∠BED=90°,
∴∠BDE+∠ABD=90°,
∵∠AMD=∠ABD,
∴∠ADM=∠BDE,
∵
∴DH=OD,
∴∠DOH=∠OHD=80°,
∴∠ODH=20°
∵∠ADB=60°,
∴∠ADM+∠BDE=40°,
∴∠BDE=∠ADM=20°,
②當點O在DE的右側時,如圖3,作直徑DN,連接BN,
由①得:∠ADE=∠BDN=20°,∠ODH=20°,
∴∠BDE=∠BDN+∠ODH=40°,
綜上所述,∠BDE的度數為20°或40°.
科目:初中數學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,AC=3,AB=5.點P從點A出發,以每秒5個單位
長度的速度沿AC方向運動,過點P作PQ⊥AB于點Q,當點Q和點B重合時,點P停止運動,以AP和AQ為邊作APHQ.設點P的運動時間為t秒(t>0)
(1)線段PQ的長為 .(用含t的代數式表示)
(2)當點H落在邊BC上時,求t的值.
(3)當APHQ與△ABC的重疊部分圖形為四邊形時,設四邊形的面積為S,求S與t之間的函數關系式.
(4)過點C作直線CD⊥AB于點D,當直線CD將APHQ分成兩部分圖形的面積比為1:7時,直接寫出t的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,AB是⊙O的直徑,∠BAC=90°,四邊形EBOC是平行四邊形,EB交⊙O于點D,連接CD并延長交AB的延長線于點F.
(1)求證:CF是⊙O的切線;
(2)若∠F=30°,EB=6,求圖中陰影部分的面積(結果保留根號和π)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖△ABC內接于⊙O,∠B=60°,CD是⊙O的直徑,點P是CD延長線上一點,且AP=AC.
(1)求證:PA是⊙O的切線;
(2)若PD=,求⊙O的直徑.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】(1)如圖1,圖2,圖3,在中,分別以
,
為邊,向
外作正三角形,正四邊形,正五邊形,
,
相交于點O.
①如圖1,求證:≌
;
②探究:如圖1,________;如圖2,
_______;如圖3,
_______;
(2)如圖4,已知:,
是以
為邊向
外所作正n邊形的一組鄰邊:
,
是以
為邊向
外所作正n邊形的一組鄰邊,
,
的延長相交于點O.
①猜想:如圖4, (用含n的式子表示);
②根據圖4證明你的猜想.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】山西特產專賣店銷售核桃,其進價為每千克40元,按每千克60元出售,平均每天可售出100千克,后來經過市場調查發現,單價每降低2元,則平均每天的銷售可增加20千克,若該專賣店銷售這種核桃要想平均每天獲利2240元,請回答:
(1)每千克核桃應降價多少元?
(2)在平均每天獲利不變的情況下,為盡可能讓利于顧客,贏得市場,該店應按原售價的幾折出售?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知二次函數的圖象與x軸交于(
, 0)和(
, 0), 其中
,與
軸交于正半軸上一點.下列結論:①
;②
;③a>b;④
.其中正確結論的序號是____________.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,中,
和
分別平分
和
的外角
,一動點
在
上運動,過點
作
的平行線與
和
的角平分線分別交于點
和點
.
求證:當點
運動到什么位置時,四邊形
為矩形,說明理由;
在第
題的基礎上,當
滿足什么條件時,四邊形
為正方形,說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com