【題目】如圖,AB=DB,∠1=∠2,請問添加下面哪個條件不能判斷△ABC≌△DBE的是( 。
A. BC=BE B. ∠A=∠D C. ∠ACB=∠DEB D. AC=DE
科目:初中數學 來源: 題型:
【題目】(1)如圖1,在△ABC中,∠DBC與∠ECB分別為△ABC的兩個外角,若∠A=60°,∠DBC+∠ECB多少度;
(2)如圖2,在△ABC中,BP、CP分別平分外角∠DBC、∠ECB,∠P與∠A有怎樣的數量關系?為什么?
(3)如圖3,在四邊形ABCD中,BP、CP分別平分外角∠EBC、∠FCB,∠P與∠A+∠D有怎樣的數量關系?為什么?
(4)如圖4,在五邊形ABCDE中,BP、CP分別平分外角∠NBC、∠MCB,∠P與∠A+∠D+∠E有怎樣的數量關系?(直接寫出答案).
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某縣為了落實中央的“強基惠民工程”,計劃將某村的居民自來水管道進行改造.該工程若由甲隊單獨施工恰好在規定時間內完成;若乙隊單獨施工,則完成工程所需天數是規定天數的1.5倍.如果由甲、乙隊先合做15天,那么余下的工程由甲隊單獨完成還需5天.
(1)這項工程的規定時間是多少天?
(2)已知甲隊每天的施工費用為6500元,乙隊每天的施工費用為3500元.為了縮短工期以減少對居民用水的影響,工程指揮部最終決定該工程由甲、乙隊合做來完成.則該工程施工費用是多少?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖1,在四邊形ABCD中,點E為AB延長線上一點,連接并延長交AD延長線于點
,
,
.(1)求證:
;
圖1
(2)如圖2,連接交
于點
,連接
,若
為
的角平分線,
為
的角平分線,過點
作
交
于點
, 求證:
;
圖2備用圖
(3)在(2)的條件下,若,
,求
的度數.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】為了更好改善河流的水質,治污公司決定購買10臺污水處理設備現有A,B兩種型號的設備,其中每臺的價格,月處理污水量如下表:經調查:購買一臺A型設備比購買一臺B型設備多2萬元,購買2臺A型設備比購買3臺B型設備少6萬元.
A型 | B型 | |
價格 | a | b |
處理污水量 | 240 | 200 |
求a,b的值;
治污公司經預算購買污水處理設備的資金不超過105萬元,你認為該公司有哪幾種購買方案;
在
的條件下,若每月要求處理污水量不低于2040噸,為了節約資金,請你為治污公司設計一種最省錢的購買方案.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖是一個長方體紙盒的平面展開圖,已知紙盒中相對兩個面上的數互為相反數.
(1)填空:a= ,b= ,c= ;
(2)先化簡,再求值:5a2b﹣[2a2b﹣3(2abc﹣a2b)+4abc].
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】閱讀解題過程,回答問題.
如圖,OC在∠AOB內,∠AOB和∠COD都是直角,且∠BOC=30°,求∠AOD的度數.
解:過O點作射線OM,使點M,O,A在同一直線上.
因為∠MOD+∠BOD=90°,∠BOC+∠BOD=90°,所以∠BOC=∠MOD,
所以∠AOD=180°-∠BOC=180°-30°=150°.
(1)如果∠BOC=60°,那么∠AOD等于多少度?如果∠BOC=n°,那么∠AOD等于多少度?
(2)如果∠AOB=∠DOC=x°,∠AOD=y°,求∠BOC的度數.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】計算題
(1)已知A=3x2+4xy,B=x2+3xy--y2,求:-A+2B.
(2)先化簡,再求值:2(5a2-7ab+9b2)-3(14a2-2ab+3b2),其中a=,b=-
.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,點A,B,C,D,E,F為⊙O的六等分點,動點P從圓心O出發,沿OE弧EFFO的路線做勻速運動,設運動的時間為t,∠BPD的度數為y,則下列圖象中表示y與t之間函數關系最恰當的是( )
A.
B.
C.
D.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com