【題目】如圖,點是
的角平分線
上一點,
于點
,點
是線段
上一點.已知
,
,點
為
上一點.若滿足
,則
的長度為( )
A.3B.5C.5和7D.3或7
【答案】D
【解析】
過點P作PE⊥AO于E,根據角平分線的性質和定義可得PE=PN,∠POE=∠PON,∠PEO=∠PNO=90°,再根據角平分線的性質可得OE=ON=5,然后根據點D與點E的先對位置分類討論,分別畫出對應的圖形,利用HL證出Rt△PDE≌Rt△PMN,可得DE=MN,即可求出OD.
解:過點P作PE⊥AO于E
∵OC平分∠AOB,,
∴PE=PN,∠POE=∠PON,∠PEO=∠PNO=90°
∴∠OPE=90°-∠POE=90°-∠PON=∠OPN
∴PO平分∠EPN
∴OE=ON=5
①若點D在點E左下方時,連接PD,如下圖所示
在Rt△PDE和Rt△PMN中
∴Rt△PDE≌Rt△PMN
∴DE=MN
∵MN=ON-OM=2
∴DE=2
∴OD=OE-DE=3
②若點D在點E右上方時,連接PD,如下圖所示
在Rt△PDE和Rt△PMN中
∴Rt△PDE≌Rt△PMN
∴DE=MN
∵MN=ON-OM=2
∴DE=2
∴OD=OE+DE=7
綜上所述:OD=3或7.
故選D.
科目:初中數學 來源: 題型:
【題目】如圖,是
的直徑,
是
的弦,延長
到點
,使
,連結
,過點
作
,垂足為
,交
的延長線于點
.
求證:
為
的切線;
猜想線段
、
、
之間的數量關系,并證明你的猜想;
若
,
,求線段
的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,二次函數的圖象與
軸交于
、
兩點,與
軸交于點
,其頂點為
,連接
、
、
,過點
作
軸的垂線
.
(1)求點,
的坐標;
(2)直線上是否存在點
,使
的面積等于
的面積的
倍?若存在,求出點
的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,AC平分鈍角∠BAE交過B點的直線于點C,BD平分∠ABC交AC于點D,且∠BAD+∠ABD=90°.
(1)求證:AE∥BC;
(2)點F是射線BC上一動點(點F不與點B,C重合),連接AF,與射線BD相交于點P.
(ⅰ)如圖1,若∠ABC=45°,AF⊥AB,試探究線段BF與CF之間滿足的數量關系;
(ⅱ)如圖2,若AB=10,S△ABC=30,∠CAF=∠ABD,求線段BP的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】對于鈍角β,定義它的三角函數值如下:
sinβ=sin(180°﹣β),cosβ=﹣cos(180°﹣β),tanβ=﹣tan(180°﹣β).
(1)求sin120°,cos135°,tan150°的值;
(2)若一個三角形的三個內角的比是1:1:4,A,B是這個三角形的兩個頂點,sinA,cosB是方程ax2﹣bx﹣1=0的兩個不相等的實數根,求a、b的值及∠A和∠B的大。
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在四邊形ABCD中,∠BAD=130°,∠B=∠D=90°,在BC,CD上分別找一點M,N,使三角形AMN周長最小時,則∠MAN的度數為_________.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】商店只有雪碧、可樂、果汁、奶汁四種飲料,每種飲料數量充足,某同學去該店購買飲料,每種飲料被選中的可能性相同.
(1)若他去買一瓶飲料,則他買到奶汁的概率是 ;
(2)若他兩次去買飲料,每次買一瓶,且兩次所買飲料品種不同,請用樹狀圖或列表法求出他恰好買到雪碧和奶汁的概率.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】綜合與實踐
問題情境
在綜合與實踐課上,老師組織同學們以“直角三角形的旋轉”為主題開展數學活動.如圖1,矩形ABCD中,AD=2AB,連接AC,將△ABC繞點A旋轉到某一位置,觀察圖形,提出問題并加以解決.
實踐操作
(1)如圖2,慎思組的同學將圖1中的△ABC以點A為旋轉中心,按逆時針方向旋轉,得到△A'B'C',此時B'C過點D,則∠ADB= 度.
(2)博學組的同學在圖2的基礎上繼續旋轉到圖3,此時點C'落在CD的延長線上,連接BB',該組提出下面兩個問題:
①C'D和AB有何數量關系?并說明理由.
②BB'和AC′有何位置關系?并說明理由.
請你解決該組提出的這兩個問題.
提出問題
(3)請你參照以上操作,將圖1中的△ABC旋轉至某一位置,在圖4中畫出新圖形,表明字母,說明構圖方法,并提出一個問題,不必解答.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com