【題目】如圖,已知拋物線經過點
、
.
(1)求拋物線的解析式,并寫出頂點的坐標;
(2)若點在拋物線上,且點
的橫坐標為8,求四邊形
的面積
(3)定點在
軸上,若將拋物線的圖象向左平移2各單位,再向上平移3個單位得到一條新的拋物線,點
在新的拋物線上運動,求定點
與動點
之間距離的最小值
(用含
的代數式表示)
【答案】(1),
;(2)36;(3)
【解析】
(1)函數的表達式為:y=(x+1)(x-5),即可求解;
(2)S四邊形AMBC=AB(yC-yD),即可求解;
(3)拋物線的表達式為:y=x2,即可求解.
(1)函數的表達式為:y=(x+1)(x-5)=
(x2-4x-5)=
,
點M坐標為(2,-3);
(2)當x=8時,y=(x+1)(x-5)=9,即點C(8,9),
S四邊形AMBC=AB(yC-yD)=
×6×(9+3)=36;
(3)y=(x+1)(x-5)=
(x2-4x-5)=
(x-2)2-3,
拋物線的圖象向左平移2個單位,再向上平移3個單位得到一條新的拋物線,
則新拋物線表達式為:y=x2,
則定點D與動點P之間距離PD=,
∵>0,PD有最小值,當x2=3m-
時,
PD最小值d=.
科目:初中數學 來源: 題型:
【題目】小紅玩抽卡片和旋轉盤游戲,有兩張正面分別標有數字1,﹣2的不透明卡片,背面完全相同;轉盤被平均分成3個相等的扇形,并分別標有數字﹣1,3,4(如圖所示),小云把卡片背面朝上洗勻后從中隨機抽出一張,記下卡片上的數字;然后轉動轉盤,轉盤停止后,記下指針所在區域的數字(若指針在分格線上,則重轉一次,直到指針指向某一區域為止).請用列表或樹狀圖的方法(只選其中一種)求出兩個數字之積為負數的概率.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,拋物線y=ax2+bx+c經過A(﹣3,0),B(1,0),C(0,3)三點.
(1)求拋物線的函數表達式;
(2)如圖1,P為拋物線上在第二象限內的一點,若△PAC面積為3,求點P的坐標;
(3)如圖2,D為拋物線的頂點,在線段AD上是否存在點M,使得以M,A,O為頂點的三角形與△ABC相似?若存在,求點M的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在矩形ABCD中,∠DAF=300,M是CD上一點,AM的延長線交BC的延長線于點F,BE垂直平分AM,DG∥AF,MG∥DE.
(1)判斷四邊形DEMG的形狀,并說明理由;
(2)求證:△ADM≌△FCM.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】把一副三角板按如圖甲放置,其中∠ACB=∠DEC=90°,∠A=45°,∠D=30°,斜邊AB=6cm,DC=7cm.把三角板DCE繞點C順時針旋轉15°得到△D1CE1(如圖乙).這時AB與CD1相交于點O、與D1E1相交于點F.
(1)求∠OFE1的度數;
(2)求線段AD1的長;
(3)若把△DCE繞著點C順時針再旋轉30°得△D2CE2,這時點B在△D2CE2的內部、外部、還是邊上?說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖1,在矩形ABCD中,點E是BC的中點,點F是線段AE上一點,BF的延長線交CD于點G.
(1)若,則
______.
(2)若,求
的值.(用含有m的代數式表示,寫出解答過程)
(3)如圖2,四邊形ABCD中,DC//AB,點E是BC的延長線上的一點,AE是BD相交于點F,若,
,則
____.(直接用含a,b的代數式表示)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,拋物線y=ax2+bx﹣2a與x軸交于點A和點B(1,0),與y軸將于點C(0,﹣).
(1)求拋物線的解析式;
(2)若點D(2,n)是拋物線上的一點,在y軸左側的拋物線上存在點T,使△TAD的面積等于△TBD的面積,求出所有滿足條件的點T的坐標;
(3)直線y=kx﹣k+2,與拋物線交于兩點P、Q,其中在點P在第一象限,點Q在第二象限,PA交y軸于點M,QA交y軸于點N,連接BM、BN,試判斷△BMN的形狀并證明你的結論.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,拋物線與直線
相交于
,
兩點,且拋物線經過點
(1)求拋物線的解析式;
(2)點P是拋物線上的一個動點(不與點A. 點B重合),過點P作直線PD⊥x軸于點D,交直線AB于點E.當PE=2ED時,求P點坐標;
(3)點P是直線上方的拋物線上的一個動點,求的面積最大時的P點坐標.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com