【題目】二次函數的部分對應值如下表:
x | … | -3 | -2 | 0 | 3 | 5 | … |
y | … | 7 | 0 | -8 | -5 | 7 | … |
則以下四個結論:①圖象的開口向上;②函數的最小值為-8;③方程的兩根分別-2,4;④若y<-5,則-1<x<3.其中正確結論的個數是( )
A.1個B.2個C.3個D.4個
科目:初中數學 來源: 題型:
【題目】如圖,AB是半圓O的直徑,點D在半圓O上,AB=13,AD=5,C是弧BD上的一個動點,連接AC,過D點作DH⊥AC于H.連接BH,在點C移動的過程中,BH的最小值是( )
A.B.
C.
D.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,拋物線y=x2+bx+c與直線y=
x+3交于A,B兩點,交x軸于C、D兩點,連接AC、BC,已知A(0,3),C(﹣3,0).
(1)求拋物線的解析式;
(2)在拋物線對稱軸l上找一點M,使|MB﹣MD|的值最大,并求出這個最大值;
(3)點P為y軸右側拋物線上一動點,連接PA,過點P作PQ⊥PA交y軸于點Q,問:是否存在點P使得以A,P,Q為頂點的三角形與△ABC相似?若存在,請求出所有符合條件的點P的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知:拋物線 y=ax2+bx+1 經過 A(1,0)、B(-1,3)兩點.
(1)求 a,b 的值;
(2)以線段 AB 為邊作正方形 ABB′A′,能否將已知拋物線平移,使其經過 A′、B′兩點?若能,求出平移后經過 A′、B′兩點的拋物線的解析式;若不能,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在等腰Rt△ABC中,∠C=90°,AC=4,矩形DEFG的頂點D、G分別在AC、BC上,邊EF在AB上.
(1)求證:△AED∽△DCG;
(2)若矩形DEFG的面積為4,求AE的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,把正方形ABCD繞點C按順時針方向旋轉45°得到正方形A′B′CD′(此時,點B′落在對角線AC上,點A′落在CD的延長線上),A′B′交AD于點E,連接AA′、CE.
求證:(1)△ADA′≌△CDE;
(2)直線CE是線段AA′的垂直平分線.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某超市預測某飲料有發展前途,用1600元購進一批飲料,面市后果然供不應求,又用6000元購進這批飲料,第二批飲料的數量是第一批的3倍,但單價比第一批貴2元.
(1)第一批飲料進貨單價多少元?
(2)若二次購進飲料按同一價格銷售,兩批全部售完后,獲利不少于1200元,那么銷售單價至少為多少元?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】甲、乙兩人分別從A、B兩地同時出發,相向而行,勻速前往B地、A地,兩人相遇時停留了4min,又各自按原速前往目的地,甲、乙兩人之間的距離y(m)與甲所用時間x(min) 之間的函數關系如圖所示.有下列說法: ①A、B之間的距離為1200m;②甲行走的速度是乙的1.5倍;③;④
.以上結論正確的有( )
A.①④B.①②③C.①③④D.①②④
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】二次函數的圖象如圖所示,對稱軸為x=1,給出下列結論:①abc<0;②b2>4ac;③4a+2b+c<0;④2a+b=0..其中正確的結論有:
A. 4個 B. 3個 C. 2個 D. 1個
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com