精英家教網 > 初中數學 > 題目詳情

【題目】如圖,點A、B是反比例函數yk≠0)圖象上的兩點,延長線段ABy 軸于點C,且點B為線段AC中點,過點AADx軸子點D,點E 為線段OD的三等分點,且OEDE.連接AE、BE,若SABE7,則k的值為(  )

A. 12 B. 10 C. 9 D. 6

【答案】A

【解析】

A(m,),C(0,n),則D(m,0),E(m,0),由AB=BC,推出B(,),根據點By=上,推出=k,可得mn=3k,連接EC,OA.因為AB=BC,推出SAEC=2SAEB=14,根據SAEC=SAEO+SACO-SECO,構建方程即可解決問題.

解:設A(m,),C(0,n),則D(m,0),E(m,0),

∵AB=BC,

∴B(,),

∵點By=上,

=k,

∴k+mn=4k,

∴mn=3k,

連接EC,OA.

∵AB=BC,

∴SAEC=2SAEB=14,

∵SAEC=SAEO+SACO-SECO,

∴14=(-m)+n(-m)-(-m)n,

∴14=-k-+

∴k=-12.

故選:A.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】已知∠MAN=120°,點C是∠MAN的平分線AQ上的一個定點,點B,D分別在AN,AM上,連接BD

【發現】

1)如圖1,若∠ABC=ADC=90°,則∠BCD=   °,CBD   三角形;

【探索】

2)如圖2,若∠ABC+ADC=180°,請判斷CBD的形狀,并證明你的結論;

【應用】

3)如圖3,已知∠EOF=120°,OP平分∠EOF,且OP=1,若點G,H分別在射線OE,OF上,且PGH為等邊三角形,則滿足上述條件的PGH的個數一共有   .(只填序號)

2344個以上

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,BC是⊙O的直徑,D、E是⊙O上的兩點,且弧CD=DE,連接EB、DO.

(1)求證:EB∥DO;

(2)連接EC,在∠CEB的外部作∠BEA=∠C,直線EA交CB的延長線于A,求證:直線EA是⊙O的切線;

(3)若EA=2,AB=1,求⊙O的半徑長.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某學習小組在討論變化的三角形時,知道大三角形與小三角形是位似圖形(如圖所示),則小三角形上的頂點(a,b)對應于大三角形上的頂點 ( )

A. (-2a,-2b) B. (2a,2b) C. (-2b,-2a) D. (-2a,-b)

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖1,兩個不全等的等腰直角三角形疊放在一起,并且有公共的直角頂點.

1)在圖1中,你發現線段的數量關系是______.直線相交成_____度角.

2)將圖1繞點順時針旋轉90°,連接得到圖2,這時(1)中的兩個結論是否成立?請作出判斷說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在平面直角坐標系xOy內,函數y=x的圖象與反比例函數y=(k≠0)圖象有公共點A,點A的坐標為(4,a),AB⊥x軸,垂足為點B.

(1)求反比例函數的解析式;

(2)點C是第一象限內直線OA上一點,過點C作直線CD∥AB,與反比例函數y=(k≠0)的圖象交于點D,且點C在點D的上方,CD=AB,求點D的坐標.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】為了推動我縣三進校園活動的廣泛開展,引導學生走向操場,走到陽光下,積極參加體育鍛煉,學校準備購買一批運動鞋供學生借用,現從各年級隨機抽取了部分學生的鞋號,繪制了如下的統計圖①和圖②,請根據相關信息,解答下列問題:

(1)本次接受隨機抽樣調查的學生人數為 ,圖①中的值為

(2)本次調查獲取的樣本數據的眾數為 ,中位數為 ;

(3)根據樣本數據,若學校計劃購買雙運動鞋,建議購買號運動鞋 .

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】ABCD中,∠BAD的平分線交直線BC于點E,交直線DC于點F.

(1)在圖1中證明CE=CF;

(2)若∠ABC=90°,GEF的中點(如圖2),直接寫出∠BDG的度數;

(3)若∠ABC=120°,FG∥CE,FG=CE,分別連接DB、DG(如圖3),求∠BDG的度數.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】甲、乙兩人參加射擊比賽,兩人成績如圖所示.

1)填表:

平均數

方差

中位數

眾數

7

1

7

9

(2)只看平均數和方差,成績更好的是   .(填“甲”或“乙”)

(3)僅就折線圖上兩人射擊命中環數的走勢看,更有潛力的是   .(填“甲”或“乙”)

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视