【題目】如圖,在△ABC中,∠ACB=α,將△ABC繞點C順時針方向旋轉到△A′B′C的位置,使AA′∥BC,設旋轉角為β,則α,β滿足關系( 。
A.α+β=90°B.α+2β=180°C.2α+β=180°D.α+β=180°
科目:初中數學 來源: 題型:
【題目】如圖,AB為⊙O的直徑,C、D為⊙O上不同于A、B的兩點,∠ABD=2∠BAC,過點C作CE⊥DB交DB的延長線于點E,直線AB與CE相交于點F.
(1)求證:CF為⊙O的切線;
(2)填空:當∠CAB的度數為________時,四邊形ACFD是菱形.
【答案】30°
【解析】(1)連結OC,如圖,由于∠A=∠OCA,則根據三角形外角性質得∠BOC=2∠A,而∠ABD=2∠BAC,所以∠ABD=∠BOC,根據平行線的判定得到OC∥BD,再CE⊥BD得到OC⊥CE,然后根據切線的判定定理得CF為⊙O的切線;
(2)根據三角形的內角和得到∠F=30°,根據等腰三角形的性質得到AC=CF,連接AD,根據平行線的性質得到∠DAF=∠F=30°,根據全等三角形的性質得到AD=AC,由菱形的判定定理即可得到結論.
答:
(1)證明:連結OC,如圖,
∵OA=OC,
∴∠A=∠OCA,
∴∠BOC=∠A+∠OCA=2∠A,
∵∠ABD=2∠BAC,
∴∠ABD=∠BOC,
∴OC∥BD,
∵CE⊥BD,
∴OC⊥CE,
∴CF為⊙O的切線;
(2)當∠CAB的度數為30°時,四邊形ACFD是菱形,理由如下:
∵∠A=30°,
∴∠COF=60°,
∴∠F=30°,
∴∠A=∠F,
∴AC=CF,
連接AD,
∵AB是⊙O的直徑,
∴AD⊥BD,
∴AD∥CF,
∴∠DAF=∠F=30°,
在△ACB與△ADB中,
,
∴△ACB≌△ADB,
∴AD=AC,
∴AD=CF,
∵AD∥CF,
∴四邊形ACFD是菱形。
故答案為:30°.
【題型】解答題
【結束】
22
【題目】經市場調查,某種商品在第x天的售價與銷量的相關信息如下表;已知該商品的進價為每件30元,設銷售該商品每天的利潤為y元.
(1)求出y與x的函數關系式
(2)問銷售該商品第幾天時,當天銷售利潤最大?最大利潤是多少?
(3)該商品銷售過程中,共有多少天日銷售利潤不低于4800元?直接寫出答案.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知拋物線與x軸交于點
和點
,與
軸交于點
.
(1)求拋物線的解析式;
(2)若點為第二象限拋物線上一動點,連接
,求
面積的最大值,并求此時
點的坐標.
(3)在拋物線上是否存在點使得
為等腰三角形?若存在,請求出一共有幾個符合條件的點
(簡要說明理由)并寫出其中一個點的坐標;若不存在這樣的點
,請簡要說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】關于的方程:
①和關于
的一元二次方程:
②(
、
、
均為實數),方程①的解為非正數.
(1)求的取值范圍.
(2)如果方程②的解為負整數,,
且
為整數,求整數
的值.
(3)當方程②有兩個實數根、
,滿足
,且
為正整數,試判斷
是否成立?請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在中,∠B=∠C,F為BC的中點,D,E分別為邊AB,AC上的點,且∠ADF=∠AEF.
(1)求證:△BDF≌△CEF.
(2)當∠A= 100°,BD=BF時,求∠DFE的度數。
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知關于x的一元二次方程x2﹣(2a﹣1)x+a2+2=0有兩個不相等的實數根.
(1)求實數a的取值范圍,并求a的最大整數;
(2)x=1可能是方程的一個根嗎?若是,請求出它的另一個根,若不是,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,四邊形ABCD是菱形,對角線AC,BD相交于點O,DH⊥AB于點H,連接OH,∠CAD=20°,則∠DHO的度數是( 。
A.20°B.25°C.30°D.40°
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,△ABC是等腰直角三角形,點P在斜邊AB上,將△ABP繞著點A逆時針旋轉90°后,點P到達點Q.
(1)在原圖上畫出旋轉后的圖形.
(2)若AB=2,PC=3PB,求PQ的長.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com