為鼓勵大學畢業生自主創業,某市政府出臺了相關政策:由政府協調,本市企業按成本價提供產品給大學畢業生自主銷售,成本價與出廠價之間的差價由政府承擔.李明按照相關政策投資銷售本市生產的一種新型節能燈.已知這種節能燈的成本價為每件10元,出廠價為每件12元,每月銷售量y(件)與銷售單價x(元)之間的關系近似滿足一次函數:y=﹣10x+500.
(1)李明在開始創業的第一個月將銷售單價定為20元,那么政府這個月為他承擔的總差價為多少元?
(2)設李明獲得的利潤為w(元),當銷售單價定為多少元時,每月可獲得最大利潤?
(3)物價部門規定,這種節能燈的銷售單價不得高于25元.如果李明想要每月獲得的利潤不低于3000元,那么政府為他承擔的總差價最少為多少元?
(1)600;(2)30;(3)500.
解析試題分析:(1)把x=20代入y=﹣10x+500求出銷售的件數,然后求出政府承擔的成本價與出廠價之間的差價;
(2)由利潤=銷售價﹣成本價,得,把函數轉化成頂點坐標式,根據二次函數的性質求出最大利潤;
(3)令﹣10x2+600x﹣5000=3000,求出x的值,結合圖象求出利潤的范圍,然后設設政府每個月為他承擔的總差價為p元,根據一次函數的性質求出總差價的最小值.
試題解析:(1)當x=20時,y=﹣10x+500=﹣10×20+500=300,
300×(12﹣10)=300×2=600,
∴政府這個月為他承擔的總差價為600元.
(2)依題意得,,
∵a=﹣10<0,∴當x=30時,w有最大值4000.
∴當銷售單價定為30元時,每月可獲得最大利潤4000.
(3)由題意得:﹣10x2+600x﹣5000=3000,解得:x1=20,x2=40。
∵a=﹣10<0,拋物線開口向下,
∴結合圖象可知:當20≤x≤40時,w≥3000.
又∵x≤25,∴當20≤x≤25時,w≥3000.
設政府每個月為他承擔的總差價為p元,
∴.
∵k=﹣20<0,∴p隨x的增大而減小.∴當x=25時,p有最小值500.
∴銷售單價定為25元時,政府每個月為他承擔的總差價最少為500元.
考點:二次函數和一次函數的應用.
科目:初中數學 來源: 題型:解答題
定義:把一個半圓與拋物線的一部分合成封閉圖形,我們把這個封閉圖形稱為“蛋圓”.如果一條直線與“蛋圓”只有一個交點,那么這條直線叫做“蛋圓”的切線.如圖,A,B,C,D分別是“蛋圓”與坐標軸的交點,已知點D的坐標為(0,8),AB為半圓的直徑,半圓的圓心M的坐標為(1,0),半圓半徑為3.
(1)請你直接寫出“蛋圓”拋物線部分的解析式 ,自變量的取值范圍是 ;
(2)請你求出過點C的“蛋圓”切線與x軸的交點坐標;
(3)求經過點D的“蛋圓”切線的解析式.
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
已知:如圖,拋物線與y軸交于點C(0,4),與x軸交于點A、B,點A的坐標為(4,0).
(1)求該拋物線的解析式;
(2)點Q是線段AB上的動點,過點Q作QE∥AC,交BC于點E,連接CQ.當△CQE的面積最大時,求點Q的坐標;
(3)若平行于x軸的動直線與該拋物線交于點P,與直線AC交于點F,點D的坐標為(2,0).問:是否存在這樣的直線
,使得△ODF是等腰三角形?若存在,請求出點P的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
如圖,直線x=﹣4與x軸交于點E,一開口向上的拋物線過原點交線段OE于點A,交直線x=﹣4于點B,過B且平行于x軸的直線與拋物線交于點C,直線OC交直線AB于D,且AD:BD=1:3.
(1)求點A的坐標;
(2)若△OBC是等腰三角形,求此拋物線的函數關系式.
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
如圖,在直角坐標系xOy中,二次函數y=x2+(2k﹣1)x+k+1的圖象與x軸相交于O、A兩點.
(1)求這個二次函數的解析式;
(2)在這條拋物線的對稱軸右邊的圖象上有一點B,使△AOB的面積等于6,求點B的坐標;
(3)對于(2)中的點B,在此拋物線上是否存在點P,使∠POB=90°?若存在,求出點P的坐標,并求出△POB的面積;若不存在,請說明理由
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
已知拋物線y=x2-2kx+3k+4.
(1)頂點在y軸上時,k的值為_________.
(2)頂點在x軸上時,k的值為_________.
(3)拋物線經過原點時,k的值為_______.
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
已知拋物線上有一點M(x0,
)位于
軸下方.
(1)求證:此拋物線與x軸交于兩點;
(2)設此拋物線與軸的交點為A(
,0),B(
,0),且
<
,求證:
<
<
.
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
為鼓勵大學畢業生自主創業,某市政府出臺了相關政策:由政府協調,本市企業按成本價提供產品給大學畢業生自主銷售,成本價與出廠價之間的差價由政府承擔.李明按照相關政策投資銷售本市生產的一種新型節能燈.已知這種節能燈的成本價為每件10元,出廠價為每件12元,每月銷售量(件)與銷售單價
(元)之間的關系近似滿足一次函數:
.
(1)李明在開始創業的第一個月將銷售單價定為20元,那么政府這個月為他承擔的總差價為多少元?
(2)設李明獲得的利潤為(元),當銷售單價定為多少元時,每月可獲得最大利潤?
(3)物價部門規定,這種節能燈的銷售單價不得高于25元.如果李明想要每月獲得的利潤不低于3000元,那么政府為他承擔的總差價最少為多少元?
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com